Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodolo...Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations.We introduce the Memory-Enhanced Autoencoder with Adversarial Training(MemAAE)model to overcome these limitations,designed explicitly for robust anomaly detection in VPP environments.The MemAAE model integrates three principal components:an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors,an adversarial training module that enhances system resilience across diverse operational scenarios,and a prediction module that aids the autoencoder during the reconstruction process,thereby facilitating precise anomaly identification.Furthermore,MemAAE features a memory mechanism that stores critical pattern information,mitigating overfitting,alongside a dynamic threshold adjustment mechanism that adapts detection thresholds in response to evolving operational conditions.Our empirical evaluation of the MemAAE model using real-world solar power data shows that the model outperforms other comparative models on both datasets.On the Sopan-Finder dataset,MemAAE has an accuracy of 99.17%and an F1-score of 95.79%,while on the Sunalab Faro PV 2017 dataset,it has an accuracy of 97.67%and an F1-score of 93.27%.Significant performance advantages have been achieved on both datasets.These results show that MemAAE model is an effective method for real-time anomaly detection in virtual power plants(VPPs),which can enhance robustness and adaptability to inherent variables in solar power generation.展开更多
Cross-modal semantic mapping and cross-media retrieval are key problems of the multimedia search engine.This study analyzes the hierarchy,the functionality,and the structure in the visual and auditory sensations of co...Cross-modal semantic mapping and cross-media retrieval are key problems of the multimedia search engine.This study analyzes the hierarchy,the functionality,and the structure in the visual and auditory sensations of cognitive system,and establishes a brain-like cross-modal semantic mapping framework based on cognitive computing of visual and auditory sensations.The mechanism of visual-auditory multisensory integration,selective attention in thalamo-cortical,emotional control in limbic system and the memory-enhancing in hippocampal were considered in the framework.Then,the algorithms of cross-modal semantic mapping were given.Experimental results show that the framework can be effectively applied to the cross-modal semantic mapping,and also provides an important significance for brain-like computing of non-von Neumann structure.展开更多
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)the Technology Development Program(RS-2023-00266141)funded by the Ministry of SMEs and Startups(MSS,Republic of Korea).
文摘Virtual Power Plants(VPPs)are integral to modern energy systems,providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data.Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations.We introduce the Memory-Enhanced Autoencoder with Adversarial Training(MemAAE)model to overcome these limitations,designed explicitly for robust anomaly detection in VPP environments.The MemAAE model integrates three principal components:an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors,an adversarial training module that enhances system resilience across diverse operational scenarios,and a prediction module that aids the autoencoder during the reconstruction process,thereby facilitating precise anomaly identification.Furthermore,MemAAE features a memory mechanism that stores critical pattern information,mitigating overfitting,alongside a dynamic threshold adjustment mechanism that adapts detection thresholds in response to evolving operational conditions.Our empirical evaluation of the MemAAE model using real-world solar power data shows that the model outperforms other comparative models on both datasets.On the Sopan-Finder dataset,MemAAE has an accuracy of 99.17%and an F1-score of 95.79%,while on the Sunalab Faro PV 2017 dataset,it has an accuracy of 97.67%and an F1-score of 93.27%.Significant performance advantages have been achieved on both datasets.These results show that MemAAE model is an effective method for real-time anomaly detection in virtual power plants(VPPs),which can enhance robustness and adaptability to inherent variables in solar power generation.
基金Supported by the National Natural Science Foundation of China(No.61305042,61202098)Projects of Center for Remote Sensing Mission Study of China National Space Administration(No.2012A03A0939)Science and Technological Research of Key Projects of Education Department of Henan Province of China(No.13A520071)
文摘Cross-modal semantic mapping and cross-media retrieval are key problems of the multimedia search engine.This study analyzes the hierarchy,the functionality,and the structure in the visual and auditory sensations of cognitive system,and establishes a brain-like cross-modal semantic mapping framework based on cognitive computing of visual and auditory sensations.The mechanism of visual-auditory multisensory integration,selective attention in thalamo-cortical,emotional control in limbic system and the memory-enhancing in hippocampal were considered in the framework.Then,the algorithms of cross-modal semantic mapping were given.Experimental results show that the framework can be effectively applied to the cross-modal semantic mapping,and also provides an important significance for brain-like computing of non-von Neumann structure.