期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
Secure Synchronization Control of Markovian Jump Neural Networks Under DoS Attacks with Memory-Based Adaptive Event-Triggered Mechanism 被引量:1
1
作者 Shanshan ZHAO Linhao ZHAO +1 位作者 Shiping WEN Long CHENG 《Artificial Intelligence Science and Engineering》 2025年第1期64-78,共15页
This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-tri... This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples. 展开更多
关键词 Piecewise-homogeneous Markovian process delay neural networks security synchronization control memory-based adaptive eventtriggered mechanism
在线阅读 下载PDF
Distributed robust data-driven event-triggered control for QUAVs under stochastic disturbances
2
作者 Chao Song Hao Li +2 位作者 Bo Li Jiacun Wang Chunwei Tian 《Defence Technology(防务技术)》 2026年第1期155-171,共17页
To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance dat... To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system. 展开更多
关键词 DATA-DRIVEN QUAV control Fault diagnosis event-triggered Non-conflicting communication
在线阅读 下载PDF
Formation-Containment Control Using Dynamic Event-Triggering Mechanism for Multi-Agent Systems 被引量:24
3
作者 Amir Amini Amir Asif Arash Mohammadi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1235-1248,共14页
The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizin... The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach. 展开更多
关键词 Co-design convex optimization dynamic event-triggered schemes formation-containment control multi-agent systems
在线阅读 下载PDF
Neural-Network-Based Adaptive Finite-Time Control for a Two-Degree-of-Freedom Helicopter System With an Event-Triggering Mechanism 被引量:1
4
作者 Zhijia Zhao Jian Zhang +2 位作者 Shouyan Chen Wei He Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1754-1765,共12页
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne... Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy. 展开更多
关键词 Adaptive neural-network control event-triggering mechanism(ETM) finite time two-degree-of-freedom helicopter
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
5
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Periodic Event-Triggered Consensus of Stochastic Multiagent Systems Under Switching Topology
6
作者 Boqian LI Linhao ZHAO Shiping WEN 《Artificial Intelligence Science and Engineering》 2025年第2期147-156,共10页
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ... The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods. 展开更多
关键词 cooperative control stochastic systems event-triggered mechanism switching topology
在线阅读 下载PDF
Adaptive Event-Triggered Control of Time-Varying Nonlinear Systems:A Tight and Powerful Strategy
7
作者 Lei Chu Yungang Liu 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2194-2206,共13页
This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-... This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-differentiable and in turn can be fast-varying.Moreover,the systems admit unknown control directions.To counteract the different uncertainties,more than one compensation mechanism has to be incorporated.However,in the context of event-triggered control,ensuring the effectiveness of these compensation mechanisms under reduced execution necessitates delicate design and analysis.This paper proposes a tight and powerful strategy for adaptive event-triggered control(ETC)by integrating the state-of-the-art adaptive techniques.In particular,the strategy substantially mitigates the conservatism caused by repetitive inequality-based treatments of uncertainties.Specifically,by leveraging the congelation-of-variables method and tuning functions,the conservatism in the treatment of the fast-varying parameters is significantly reduced.With multiple Nussbaum functions employed to handle unknown control directions,a set of dynamic compensations is designed to counteract unknown amplitudes of control coefficients without relying on inequality-based treatments.Moreover,a dedicated dynamic compensation is introduced to deal with the control coefficient coupled with the execution error,based on which a relativethreshold event-triggering mechanism(ETM)is rigorously validated.It turns out that the adaptive event-triggered controller achieves the closed-loop convergence while guaranteeing a uniform lower bound for inter-execution times.Simulation results verify the effectiveness and superiority of the proposed strategy. 展开更多
关键词 Adaptive event-triggered control multiple Nussbaum functions nonlinear systems time-varying uncertainties
在线阅读 下载PDF
Event-triggered control for a class of large-scale nonlinear systems with neutral delays and unknown backlash-like hysteresis
8
作者 Yiyu Feng Weihao Pan +1 位作者 Yanan Qi Xianfu Zhang 《Control Theory and Technology》 2025年第2期253-265,共13页
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t... This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme. 展开更多
关键词 Large-scale nonlinear systems Neutral delays Unknown backlash-like hysteresis event-triggered control
原文传递
Accumulative-Error-Based Event-Triggered Control for Discrete-Time Linear Systems:A Discrete-Time Looped Functional Method
9
作者 Xian-Ming Zhang Qing-Long Han +1 位作者 Xiaohua Ge Bao-Lin Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期683-693,共11页
This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulat... This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method. 展开更多
关键词 Discrete-time linear systems event-triggered control input saturation looped functional method
在线阅读 下载PDF
Output feedback control of nonlinear time-delay systems with multiple uncertainties via an event-triggered strategy
10
作者 Weiyong Yu Qi Chen +2 位作者 Hongbing Zhou Xiang An Qiang Liu 《Control Theory and Technology》 2025年第2期321-340,共20页
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses... This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective. 展开更多
关键词 Dynamic gain event-triggered control Input matching uncertainty Nonlinear time-delay systems Output feedback Unknown measurement sensitivity
原文传递
Hybrid Event-Triggered Control With Stability Analysis
11
作者 Ding Wang Lingzhi Hu Junfei Qiao 《IEEE/CAA Journal of Automatica Sinica》 2025年第7期1464-1474,共11页
In this paper,a novel hybrid event-triggered control(ETC)method is developed based on the online action-critic technique,which aims at tackling the optimal regulation problem of discrete-time nonlinear systems.In orde... In this paper,a novel hybrid event-triggered control(ETC)method is developed based on the online action-critic technique,which aims at tackling the optimal regulation problem of discrete-time nonlinear systems.In order to ensure the normal execution of the online learning algorithm,a stability criterion condition is created to obtain the initial admissible control policy by using an offline iterative method under the time-triggered control framework.Subsequently,a general triggering condition is designed based on the uniform ultimate boundedness of the controlled system.In order to determine a constant interval which can ensure the system stability,another triggering condition is introduced and the asymptotic stability of the closed-loop system satisfying this condition is analyzed from the perspective of the input-to-state stability.The designed online hybrid ETC method not only further improves control efficiency,but also avoids the continuous judgment of the corresponding triggering condition.In addition,the event-based control law can approach the optimal control input within a finite approximation error.Finally,two experimental examples with physical background are conducted to indicate the present results. 展开更多
关键词 Adaptive critic control discrete-time nonlinear systems hybrid event-triggered mechanism initial admissible policies stability analysis
在线阅读 下载PDF
Model-Based Decentralized Dynamic Periodic Event-Triggered Control for Nonlinear Systems Subject to Packet Losses
12
作者 Chengchao Li Xudong Zhao +2 位作者 Wei Xing Ning Xu Ning Zhao 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1908-1919,共12页
This paper studies the problem of designing a modelbased decentralized dynamic periodic event-triggering mechanism(DDPETM)for networked control systems(NCSs)subject to packet losses and external disturbances.Firstly,t... This paper studies the problem of designing a modelbased decentralized dynamic periodic event-triggering mechanism(DDPETM)for networked control systems(NCSs)subject to packet losses and external disturbances.Firstly,the entire NCSs,comprising the triggering mechanism,packet losses and output-based controller,are unified into a hybrid dynamical framework.Secondly,by introducing dynamic triggering variables,the DDPETM is designed to conserve network resources while guaranteeing desired performance properties and tolerating the maximum allowable number of successive packet losses.Thirdly,some stability conditions are derived using the Lyapunov approach.Differing from the zero-order-hold(ZOH)case,the model-based control sufficiently exploits the model information at the controller side.Between two updates,the controller predicts the plant state based on the models and received feedback information.With the model-based control,less transmission may be expected than with ZOH.Finally,numerical examples and comparative experiments demonstrate the effectiveness of the proposed method. 展开更多
关键词 Decentralized dynamic periodic event-triggering mechanism(DDPETM) hybrid system approach model-based control networked control system successive packet losses
在线阅读 下载PDF
Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems
13
作者 Qinglai Wei Shanshan Jiao +1 位作者 Qi Dong Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期40-53,共14页
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s... This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network(NN) event-triggered control optimal consensus control robust control
在线阅读 下载PDF
Distributed event-triggered collision avoidance coordinated control for QUAVs based on flexible virtual tubes
14
作者 Hongzhen GUO Mou CHEN +1 位作者 Mihai LUNGU Baomin LI 《Chinese Journal of Aeronautics》 2025年第2期339-352,共14页
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un... In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method. 展开更多
关键词 Quadrotor unmanned aerial vehicles Collision avoidance Virtual tubes with flexible boundaries event-triggered mechanism Hysteresis uniform quantizer Distributed coordinated control
原文传递
Enhanced Tube-Based Event-Triggered Stochastic Model Predictive Control With Additive Uncertainties
15
作者 Chenxi Gu Xinli Wang +3 位作者 Kang Li Xiaohong Yin Shaoyuan Li Lei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期596-605,共10页
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a... This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control. 展开更多
关键词 event-triggered mechanism HEATING ventilation and air conditioning(HVAC)control probabilistic reachable set stochastic model predictive control
在线阅读 下载PDF
Distributed performance constraint control for heterogeneous multiagent systems with dynamic event-triggered mechanism
16
作者 Hongzhen GUO Mou CHEN Peng ZHANG 《Chinese Journal of Aeronautics》 2025年第3期124-133,共10页
In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese... In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS. 展开更多
关键词 Heterogeneous multiagent systems Quadrotor unmanned aerial vehicles Unmanned ground vehicles Distributed disturbance observer Appoin ted-timne prescribed performance function event-triggered mechanism
原文传递
Dynamic Event-triggered Control and Estimation: A Survey 被引量:18
17
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《International Journal of Automation and computing》 EI CSCD 2021年第6期857-886,共30页
The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e... The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research. 展开更多
关键词 Networked systems dynamic event-triggered control dynamic event-triggered estimation dynamic event-triggered mechanisms vehicle active suspension system water distribution and supply system
原文传递
Dynamic Event-Triggered Scheduling and Platooning Control Co-Design for Automated Vehicles Over Vehicular Ad-Hoc Networks 被引量:35
18
作者 Xiaohua Ge Shunyuan Xiao +2 位作者 Qing-Long Han Xian-Ming Zhang Derui Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期31-46,共16页
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr... This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency. 展开更多
关键词 Automated vehicles dynamic event-triggered communication information flow topology platooning control vehicular ad-hoc networks(VANETs)
在线阅读 下载PDF
Adaptive event-triggered distributed optimal guidance design via adaptive dynamic programming 被引量:7
19
作者 Teng LONG Yan CAO +1 位作者 Jingliang SUN Guangtong XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期113-127,共15页
In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is propos... In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Adaptive dynamic programming Distributed control event-triggered Guidance and control Multi-agent system
原文传递
Consensus Control of Multi-Agent Systems Using Fault-Estimation-in-the-Loop:Dynamic Event-Triggered Case 被引量:24
20
作者 Yamei Ju Derui Ding +2 位作者 Xiao He Qing-Long Han Guoliang Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1440-1451,共12页
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl... The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework. 展开更多
关键词 Consensus control dynamic event-triggered protocol(DETP) fault compensation(FC) fault estimation multi-agent systems(MASs)
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部