In this paper,the authors consider the inverse problem for the Moore-Gibson-Thompson equation with a memory term and variable diffusivity,which introduce a sort of delay in the dynamics,producing nonlocal effects in t...In this paper,the authors consider the inverse problem for the Moore-Gibson-Thompson equation with a memory term and variable diffusivity,which introduce a sort of delay in the dynamics,producing nonlocal effects in time.The H¨older stability of simultaneously determining the spatially varying viscosity coefficient and the source term is obtained by means of the key pointwise Carleman estimate for the Moore-Gibson-Thompson equation.For the sake of generality in mathematical tools,the analysis of this paper is discussed within the framework of Riemannian geometry.展开更多
This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback att...This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.展开更多
1 A study shows that music lessons obviously enhance children's cognitive abilities,including short⁃term memory and planning,which lead to improving academic performance.The research is the first large⁃scale and l...1 A study shows that music lessons obviously enhance children's cognitive abilities,including short⁃term memory and planning,which lead to improving academic performance.The research is the first large⁃scale and long⁃term study to be adapted into the regular school curriculum.Visual arts lessons were also found to significantly improve children's visual memory.展开更多
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.展开更多
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ...Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.展开更多
Let Ω R^n be a bounded domain with a smooth boundary. We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term Based on a time-uniform priori estimate method, the existence ...Let Ω R^n be a bounded domain with a smooth boundary. We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term Based on a time-uniform priori estimate method, the existence of the compact global attractor is proved for this model in the phase space H^(^) x L2(~).展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor...The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.展开更多
In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-...In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.展开更多
In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitabl...In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of relaxation function.展开更多
In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functio...In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.展开更多
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne...In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution.展开更多
Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ...Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.展开更多
Mental workload plays a vital role in cognitive impairment. The impairment refers to a person’s difficulty in remembering, receiving new information, learning new things, concentrating, or making decisions that serio...Mental workload plays a vital role in cognitive impairment. The impairment refers to a person’s difficulty in remembering, receiving new information, learning new things, concentrating, or making decisions that seriously affect everyday life. In this paper, the simultaneous capacity (SIMKAP) experiment-based EEG workload analysis was presented using 45 subjects for multitasking mental workload estimation with subject wise attention loss calculation as well as short term memory loss measurement. Using an open access preprocessed EEG dataset, Discrete wavelet transforms (DWT) was utilized for feature extraction and Minimum redundancy and maximum relevancy (MRMR) technique was used to select most relevance features. Wavelet decomposition technique was also used for decomposing EEG signals into five sub bands. Fourteen statistical features were calculated from each sub band signal to form a 5 × 14 window size. The Neural Network (Narrow) classification algorithm was used to classify dataset for low and high workload conditions and comparison was made using some other machine learning models. The results show the classifier’s accuracy of 86.7%, precision of 84.4%, F1 score of 86.33%, and recall of 88.37% that crosses the state-of-the art methodologies in the literature. This prediction is expected to greatly facilitate the improved way in memory and attention loss impairments assessment.展开更多
随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term me...随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term memory,LSTM)选出预测准确度良好的股票;最后,预测所选出的股票在未来几天的股价趋势.在实证分析方面,通过本模型对部分股票进行运算,选取预测效果较好的股票:赢合科技.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of ir...This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of irregular lightweight composite through boosting conceptual design in aeronautic and aerospace engineering,the HDT meaning hybridization of physical and digital domains,including deformation and energy efficiency can be built,where the essential parameters can be perceptually predicted in advance,by virtue of the fusion of physical sensors and digital information.The long short term memory(LSTM)can be employed to void vanishing gradient problem and improve predicting precision via Recurrent Neural Networks,thereby laying a foundation for the HDT.The diverse manufacturing requirements of different regions are integrated into the parameters designing phase by attaching region weights confirmed via empiricism and in-service simulation.The effects of slicing strategy and external support structures on manufacturing quality are considered from the perspective of improving dimensional accuracy.The manufacturing efficiency and comprehensive costs are accounted as consideration factors,which are perceptually predicted via LSTM.The designed manufacturing parameters through HDT were virtually examined by evaluating the deformation and equivalent stress distributions of fabricated lightweight component with composite material through AM process simulation.The physical experiments were conducted to verify the HDT-based pre-designing and optimization method of manufacturing parameters via fused deposition modeling(FDM).The energy consumption of actual manufacturing process was measured via digital power meter and applied to evaluate accuracy of perceptual prediction outcomes.The dimensional accuracy and distortion distribution of the manufactured lightweight prototype made with composite material were measured through the coordinate measuring machine(CMM)and 3D optical scanner.The proposed method demonstrates effectiveness in improving manufacturing quality and accurately predicting energy consumption,which have been verified with a three-way solenoid valve element,in which the maximum deformation was reduced by 39.78%and the mean absolute percentage error for perceptual prediction was 3.76%.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
基金supported by the National Key R&D Program of China under Grant No.2018YFA0703800the National Science Foundation of China under Grant No.T2293770。
文摘In this paper,the authors consider the inverse problem for the Moore-Gibson-Thompson equation with a memory term and variable diffusivity,which introduce a sort of delay in the dynamics,producing nonlocal effects in time.The H¨older stability of simultaneously determining the spatially varying viscosity coefficient and the source term is obtained by means of the key pointwise Carleman estimate for the Moore-Gibson-Thompson equation.For the sake of generality in mathematical tools,the analysis of this paper is discussed within the framework of Riemannian geometry.
文摘This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.
文摘1 A study shows that music lessons obviously enhance children's cognitive abilities,including short⁃term memory and planning,which lead to improving academic performance.The research is the first large⁃scale and long⁃term study to be adapted into the regular school curriculum.Visual arts lessons were also found to significantly improve children's visual memory.
基金The author Dr.Arshiya S.Ansari extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number(R-2025-1538).
文摘Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金supported by the National Natural Science Foundation of China(No.62276204)Open Foundation of Science and Technology on Electronic Information Control Laboratory,Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.
基金Supported by the National Natural Science Foundation of China (Grant No. 10471018)
文摘Let Ω R^n be a bounded domain with a smooth boundary. We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term Based on a time-uniform priori estimate method, the existence of the compact global attractor is proved for this model in the phase space H^(^) x L2(~).
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407004)the Natural Science Foundation of China(Grants No.51939004 and 11772116).
文摘The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.
基金Supported by the Natural Science Foundation of China(Grant No.11371175)Innovation Team Project in Colleges and Universities of Guangdong Province(Grant No.2020WCXTD008)+1 种基金Science Foundation of Huashang College Guangdong University of Finance&Economics(Grant No.2020HSDS01)Science Research Team Project in Guangzhou Huashang College(Grant No.2021HSKT01).
文摘In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(20110007870)
文摘In this paper, we investigate the influence of boundary dissipation on the de-cay property of solutions for a transmission problem of Kirchhoff type wave equation with boundary memory condition. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of relaxation function.
基金supported by the Dong-A University research fund
文摘In this article, we consider a differential inclusion of Kirchhoff type with a memory condition at the boundary. We prove the asymptotic behavior of the corresponding solutions. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.
基金This research is funded by Vellore Institute of Technology,Chennai,India.
文摘In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50305005)
文摘Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.
文摘Mental workload plays a vital role in cognitive impairment. The impairment refers to a person’s difficulty in remembering, receiving new information, learning new things, concentrating, or making decisions that seriously affect everyday life. In this paper, the simultaneous capacity (SIMKAP) experiment-based EEG workload analysis was presented using 45 subjects for multitasking mental workload estimation with subject wise attention loss calculation as well as short term memory loss measurement. Using an open access preprocessed EEG dataset, Discrete wavelet transforms (DWT) was utilized for feature extraction and Minimum redundancy and maximum relevancy (MRMR) technique was used to select most relevance features. Wavelet decomposition technique was also used for decomposing EEG signals into five sub bands. Fourteen statistical features were calculated from each sub band signal to form a 5 × 14 window size. The Neural Network (Narrow) classification algorithm was used to classify dataset for low and high workload conditions and comparison was made using some other machine learning models. The results show the classifier’s accuracy of 86.7%, precision of 84.4%, F1 score of 86.33%, and recall of 88.37% that crosses the state-of-the art methodologies in the literature. This prediction is expected to greatly facilitate the improved way in memory and attention loss impairments assessment.
文摘随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term memory,LSTM)选出预测准确度良好的股票;最后,预测所选出的股票在未来几天的股价趋势.在实证分析方面,通过本模型对部分股票进行运算,选取预测效果较好的股票:赢合科技.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
基金Supported by National Key Research and Development Project of China(Grant No.2022YFB3303303)Zhejiang Provincial Research and Development Project of China(Grant No.LGG22E050010)Key Open Fund of State Key Laboratory of Materials Processing and Die and Mould Technology of China(Grant No.P2024-001).
文摘This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of irregular lightweight composite through boosting conceptual design in aeronautic and aerospace engineering,the HDT meaning hybridization of physical and digital domains,including deformation and energy efficiency can be built,where the essential parameters can be perceptually predicted in advance,by virtue of the fusion of physical sensors and digital information.The long short term memory(LSTM)can be employed to void vanishing gradient problem and improve predicting precision via Recurrent Neural Networks,thereby laying a foundation for the HDT.The diverse manufacturing requirements of different regions are integrated into the parameters designing phase by attaching region weights confirmed via empiricism and in-service simulation.The effects of slicing strategy and external support structures on manufacturing quality are considered from the perspective of improving dimensional accuracy.The manufacturing efficiency and comprehensive costs are accounted as consideration factors,which are perceptually predicted via LSTM.The designed manufacturing parameters through HDT were virtually examined by evaluating the deformation and equivalent stress distributions of fabricated lightweight component with composite material through AM process simulation.The physical experiments were conducted to verify the HDT-based pre-designing and optimization method of manufacturing parameters via fused deposition modeling(FDM).The energy consumption of actual manufacturing process was measured via digital power meter and applied to evaluate accuracy of perceptual prediction outcomes.The dimensional accuracy and distortion distribution of the manufactured lightweight prototype made with composite material were measured through the coordinate measuring machine(CMM)and 3D optical scanner.The proposed method demonstrates effectiveness in improving manufacturing quality and accurately predicting energy consumption,which have been verified with a three-way solenoid valve element,in which the maximum deformation was reduced by 39.78%and the mean absolute percentage error for perceptual prediction was 3.76%.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.