This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-d...This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.展开更多
This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a co...This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a composite learning technique in NN control.This method leverages the prediction error within the NN update law to enhance the accuracy of the unknown nonlinearity estimation.Subsequently,by introducing a time-varying transformation,the study establishes a distributed prescribed-time control algorithm.The notable feature of this algorithm is its ability to predetermine the convergence time independently of initial conditions or control parameters.Moreover,the DMETM is established to reduce the actuation frequency of the controller.Unlike the conventional memoryless dynamic event-triggered mechanism,the DMETM incorporates a memory term to further increase triggering intervals.Utilizing a distributed estimator for the leader,the DMETM-based NN prescribed-time controller is designed in a fully distributed manner,which guarantees that all signals in the closed-loop system remain bounded within the prescribed time.Finally,simulation results are presented to validate the effectiveness of the proposed algorithm.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ...The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.展开更多
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t...This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.展开更多
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses...This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.展开更多
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s...This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese...In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model ...Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.展开更多
This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-tr...This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-triggered scheme and against a stochastic deception attack is addressed in a novel looped-functional framework.A quadratic event-triggered scheme with a discrete-time dynamic variable is proposed in which the system states are only evaluated at aperiodic sampling instants so that the Zeno phenomenon can be avoided consequently.The system is assumed to be intruded by a deception attack signal which is determined by a Bernoulli random variable.Our objective in this paper is to derive the stability conditions firstly and then provide the resilient and event-triggered controller design for the aperiodic sampled-data system.With a certain H∞attack and the control updates can be obviously reduced by the proposed dynamic event-triggered scheme,which means the system performance,the limited communication resources,and the system security can be well balanced in our design.Finally,the validity and effectiveness of the proposed method is demonstrated by the simulations.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.Firs...To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H_(∞ )performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金supported by the National Natural Science Foundation of China(61773056)the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(USTB)(BK19AE018)+2 种基金the Fundamental Research Funds for the Central Universities of USTB(FRF-TP-20-09B,230201606500061,FRF-DF-20-35,FRF-BD-19-002A)supported by Zhejiang Natural Science Foundation(LD21F030001)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and Information and Communications Technology)(NRF-2020R1A2C1005449)。
文摘This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.62033003,62373113,62203119)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011527,2023B1515120010)。
文摘This work investigates the implementation of distributed prescribed-time neural network(NN)control for nonlinear multiagent systems(MASs)using a dynamic memory event-triggered mechanism(DMETM).First,it introduces a composite learning technique in NN control.This method leverages the prediction error within the NN update law to enhance the accuracy of the unknown nonlinearity estimation.Subsequently,by introducing a time-varying transformation,the study establishes a distributed prescribed-time control algorithm.The notable feature of this algorithm is its ability to predetermine the convergence time independently of initial conditions or control parameters.Moreover,the DMETM is established to reduce the actuation frequency of the controller.Unlike the conventional memoryless dynamic event-triggered mechanism,the DMETM incorporates a memory term to further increase triggering intervals.Utilizing a distributed estimator for the leader,the DMETM-based NN prescribed-time controller is designed in a fully distributed manner,which guarantees that all signals in the closed-loop system remain bounded within the prescribed time.Finally,simulation results are presented to validate the effectiveness of the proposed algorithm.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
文摘The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods.
基金supported by the National Natural Science Foundation of China under Grant 62073190the Science Center Program of National Natural Science Foundation of China under Grant 62188101.
文摘This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.
基金supported by the fund of Beijing Municipal Commission of Education(KM202210017001 and 22019821001)the Natural Science Foundation of Henan Province(222300420253).
文摘This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.
基金supported in part by the National Key Research and Development Program of China(2021YFE0206100)the National Natural Science Foundation of China(62425310,62073321)+2 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029,JCKY2020130C025)the Science and Technology Development FundMacao SAR(FDCT-22-009-MISE,0060/2021/A2,0015/2020/AMJ)
文摘This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金supported in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by the Beijing Municipal Science&Technology Commission China(No.Z19111000270000)the National Natural Science Foundation of China(Nos.62203050,51774042).
文摘Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented.
基金supported in part by the China Scholarship Council(No.202206030132)the European Union-NextGenerationEU。
文摘This paper discusses the design of resilient and event-triggered control for linear aperiodic sampled-data systems.The stability and stabilization problem of the aperiodic sampled-data systems under a dynamic event-triggered scheme and against a stochastic deception attack is addressed in a novel looped-functional framework.A quadratic event-triggered scheme with a discrete-time dynamic variable is proposed in which the system states are only evaluated at aperiodic sampling instants so that the Zeno phenomenon can be avoided consequently.The system is assumed to be intruded by a deception attack signal which is determined by a Bernoulli random variable.Our objective in this paper is to derive the stability conditions firstly and then provide the resilient and event-triggered controller design for the aperiodic sampled-data system.With a certain H∞attack and the control updates can be obviously reduced by the proposed dynamic event-triggered scheme,which means the system performance,the limited communication resources,and the system security can be well balanced in our design.Finally,the validity and effectiveness of the proposed method is demonstrated by the simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金National Natural Science Foundation of China(No.62073296)Natural Science Foundation of Zhejiang Province,China(No.LZ23F030010)Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province,China Jiliang University(No.ZNZZSZ-CJLU2022-03)Rights and permissions。
文摘To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H_(∞ )performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.