期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Effect of Annealing on the Shape Memory Effect and Mechanical Properties of Laser Powder Bed Fusion NiTi Alloy
1
作者 Yunting Guo Mengqi Liu +8 位作者 Chaorui Jiang Ruiyao Liu Jundong Zhang Pengwei Sha Hang Li Zhenglei Yu Zhihui Zhang Zezhou Xu Luquan Ren 《Additive Manufacturing Frontiers》 2025年第1期125-135,共11页
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e... The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys. 展开更多
关键词 ANNEALING LPBF-NiTi Shape memory effect Mechanical properties PRECIPITATES
在线阅读 下载PDF
Synchronously enhancing the plasticity and soft magnetism in Fe-based metallic glasses through memory effect
2
作者 Weihua Zhou Shiyuan Zhang +3 位作者 Lijian Song Juntao Huo Jun-Qiang Wang Yi Li 《Journal of Materials Science & Technology》 2025年第10期146-152,共7页
Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG c... Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG can be reductilized and the coercivity can be further lowered through the rejuvenation of memory effect. The synchronous improvement in the plasticity and soft magnetic properties is attributed to the combination effects of releasing much residual stress, decreasing the magnetic anisotropy, and homogenizing the glasses during the rejuvenation process. The current work opens a new perspective to improve the properties of MGs by utilizing the memory effect and holds promising commercial application potential. 展开更多
关键词 memory effect REJUVENATION Reductilization Soft magnetism Fe-based metallic glass
原文传递
Active manipulation of the optical spectral memory effect via scattering eigenchannels
3
作者 Daixuan Wu Jinye Du +11 位作者 Yuecheng Shen Jiawei Luo Zhengyang Wang Jiaming Liang Zhiling Zhang Dalong Qi Yunhua Yao Lianzhong Deng Meng Liu Zhenrong Sun Zhi-Chao Luo Shian Zhang 《Advanced Photonics Nexus》 2025年第2期135-145,共11页
The spectral memory effect in scattering media is crucial for applications that employ broadband illumination,as it dictates the available spectral range from independent scattering responses.Previous studies mainly c... The spectral memory effect in scattering media is crucial for applications that employ broadband illumination,as it dictates the available spectral range from independent scattering responses.Previous studies mainly considered a passive result with the average impact of the scattering medium,whereas it is vital to actively enhance or suppress this effect for applications concerned with large spectral range or fine resolution.We construct an analytical model by integrating the concepts of wave-based interference and photon-based propagation,which manifests a potential physical image for active manipulation by utilizing scattering eigenchannels.Our theoretical predictions indicate that the spectral memory effect is enhanced using high-transmission eigenchannels while it is suppressed using low-transmission eigenchannels.These predictions are supported by finite-difference time-domain simulations and experiments,demonstrating that the spectral memory effect’s range can be actively manipulated.Quantitatively,the experiments achieved variations in enhancement and suppression that exceeded threefold(∼3.27).We clarify the underlying principles of the spectral memory effect in scattering media and demonstrate active manipulation of multispectral scattering processes. 展开更多
关键词 wavefront shaping spectral memory effect transmission matrix
在线阅读 下载PDF
Significantly Enhanced Melt Memory Effect of Metallocene-made Isotactic Polypropylene Containing Talc 被引量:1
4
作者 Hong-Wen Sun Fu-Shan Wang +2 位作者 Yan Gao Fu-Qing Wei Jia-Chun Feng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第2期213-222,I0008,共11页
The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In t... The melt memory effect is a widely observed phenomenon in semi-crystalline polymers. In practical applications, various additives are usually introduced into polymers, which may affect their melt memory behavior. In this work, the effect of talc on the melt memory effect of metallocene-made isotactic polypropylene(M-PP) was investigated in detail by using the differential scanning calorimetry. The results indicated that the introduction of talc significantly strengthened the melt memory effect of M-PP. Specifically, the upper limit temperature of Domain II increased from 161 ℃ to 174 ℃, resulting in a substantial widening of the temperature range of Domain IIa from 1 ℃ to 14 ℃. Analysis of the crystal orientation of the M-PP containing talc cooled from various Ts suggested that the remarkably enhanced melt memory effect could be ascribed to the stabilization of oriented nuclei facilitated by talc. This stabilizing effect was likely attributable to the prefreezing effect or the sorption interaction between talc and the M-PP chains. 展开更多
关键词 Metallocene-made isotactic polypropylene TALC Melt memory effect Crystal orientation
原文传递
Toward tunable shape memory effect of NiTi alloy by grain size engineering:A phase field study
5
作者 Bo Xu Chong Wang Qingyuan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期276-289,共14页
The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been ... The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been not yet mature.In this work,the phase field method was used to investigate the shape memory effects(SMEs)of NiTi SMAs undergoing grain size(GS)engineering,to obtain tunable one-way and stress-assisted two-way SMEs(OWSME and SATWSME).The OWSME and SATWSME of the systems with various gradient-nanograin structures and bimodal grain structure,as well as that with geometric gradients were simulated.The simulated results indicate that due to the GS dependences of martensite transformation and reorientation,the occurrence and expansion of martensite reorientation,martensite transformation and its reverse can be efficaciously controlled via the GS engineering.When combining the GS engineering and geometric gradient design,since the effects of GS and stress gradient can be su-perimposed or competing,and the responses of martensite reorientation,martensite transformation and its reverse to this are different,the OWSME and SATWSME of the geometrically graded systems with various nanograin structures can exhibit different improvements in controllability.In short,the reorienta-tion hardening modulus during OWSME is increased and the transformation temperature window during SATWSME is widened by GS engineering,indicating the improved controllability of SMEs.The optimal GS engineering schemes revealed in this work provide the basic reference and guidance for designing tun-able SMEs and producing NiTi-based driving devices catering to desired functional performance in various engineering fields. 展开更多
关键词 Phase field NITI Shape memory effect Grain size engineering Geometric gradient
原文传递
Two-way shape memory effect in a Ti-Zr-Nb-Ta high-temperature shape memory alloy
6
作者 Cheng-Yang Xiong Tuo Li +1 位作者 Jun Wang Yan Li 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1257-1262,共6页
The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase... The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase is not found in Ti-18.5Zr-10Nb-3.5Ta alloy due to the suppressing effect of Ta element.Theα"-martensite laths are found in the transmission electron microscope observation;after the bending deformation,there appear a lot of dislocations.The alloy exhibits a shape memory strain of 3.8%aud a high reverse martensite transformation start temperature of 464 K.The maximum two-way shape memory strain of 1.2%is obtained in the alloy with the prebending training strain of 10%.The mechanism can be ascribed to the effect of internal stress field caused by dislocations. 展开更多
关键词 Ti-Zr Shape memory alloys Two-way shape memory effect
原文传递
Memory effect in time fractional Schrödinger equation
7
作者 祖传金 余向阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期216-221,共6页
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio... A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation. 展开更多
关键词 time fractional Schrodinger equation memory effect non-Markovian environment
原文传递
Three-Dimensional Phase-Field Simulation of Stress-Assisted Two-Way Shape Memory Effect and Its Cyclic Degradation of Single-Crystal NiTi Shape Memory Alloy
8
作者 Bo Xu Chao Yu +2 位作者 Chong Wang Qingyuan Wang Guozheng Kang 《Acta Mechanica Solida Sinica》 CSCD 2024年第6期858-872,共15页
In this work,a three-dimensional crystal-plasticity-based phase-field model considering three kinds of inelastic deformation mechanisms,i.e.,martensitic transformation,dislocation slip in austenite,and dislocation sli... In this work,a three-dimensional crystal-plasticity-based phase-field model considering three kinds of inelastic deformation mechanisms,i.e.,martensitic transformation,dislocation slip in austenite,and dislocation slip in martensite,is established to simulate the stress-assisted two-way shape memory effect(SATWSME)of NiTi single crystals and its cyclic degradation.The simulation results show that the ability of the SATWSME of NiTi single crystal increases as increasing the constant stress in the range discussed in this work(10–100 MPa),which is due to the increase of reoriented martensite formed in the cooling process due to the enhanced variant-selection capability of increased constant stress.The martensitic transformation and its reverse in the cyclic process reflecting the SATWSME show more and more obvious localization characteristics,resulting in the accumulation of significantly heterogeneous plastic deformation(mainly caused by the dislocation slip in austenite),which leads to the cyclic degradation of SATWSME.The simulation results and the conclusions drawn from this work are helpful for further understanding the mechanism of functional cyclic degradation of NiTi alloys. 展开更多
关键词 PHASE-FIELD NiTi shape memory alloy Crystal plasticity Stress-assisted two-way shape memory effect Cyclic degradation
原文传递
Memory effect on the pressure-temperature condition and induction time of gas hydrate nucleation 被引量:13
9
作者 Qiang Wu Baoyong Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期446-451,共6页
The focus of this study is to investigate the influence of memory effect and the relation of its existence with the dissociation temperature,using gas hydrate formation and dissociation experiments.This is beneficial ... The focus of this study is to investigate the influence of memory effect and the relation of its existence with the dissociation temperature,using gas hydrate formation and dissociation experiments.This is beneficial because memory effect is considered as an effective approach to promote the thermodynamic and dynamic conditions of gas hydrate nucleation.Seven experimental systems (twenty tests in total) were performed in a 1 L pressure cell.Three types of hydrate morphology,namely massive,whiskery and jelly crystals were present in the experiments.The pressures and temperatures at the time when visual hydrate crystals appeared were measured.Furthermore,the influence of memory effect was quantified in terms of pressure-temperature-time (p-T-t) relations.The results revealed that memory effect could promote the thermodynamic conditions and shorten the induction time when the dissociation temperature was not higher than 25℃.In this study,the nucleation superpressure and induction time decrease gradually with time of tests,when the earlier and the later tests are compared.It is assumed that the residual structure of hydrate dissociation,as the source of the memory effect,provides a site for mass transfer between host and vip molecules.Therefore,a driving force is created between the residual structures and its surrounding bulk phase to promote the hydrate nucleation.However,when the dissociation temperature was higher than 25 ℃,the memory effect vanished.These findings provide references for the application of memory effect in hydrate-based technology. 展开更多
关键词 gas hydrate memory effect NUCLEATION THERMODYNAMICS induction time
在线阅读 下载PDF
Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion 被引量:11
10
作者 Wei Chen Dongdong Gu +3 位作者 Jiankai Yang Qin Yang Jie Chen Xianfeng Shen 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期189-205,共17页
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica... Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM. 展开更多
关键词 additive manufacturing laser powder bed fusion gradient lattice structures deformation behavior shape memory effect
在线阅读 下载PDF
SHAPE MEMORY EFFECT OF PU IONOMERS WITH IONIC GROUPS ON HARD-SEGMENTS 被引量:6
11
作者 胡金莲 Kwok-wing Yeung 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第2期173-186,共14页
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) wer... SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content. 展开更多
关键词 Polyurethane IONOMERS Cyclic thermo-mechanical investigations Shape memory effect Cyclic tensile test Strain recovery test.
在线阅读 下载PDF
A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy 被引量:6
12
作者 Chao Yu Guozheng Kang Qianhua Kan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期619-634,共16页
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor... A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model. 展开更多
关键词 NiTi SMAs Constitutive model Cyclic degeneration of shape memory effect Transformation-induced plasticity Reorientation-induced plasticity
在线阅读 下载PDF
Buckling-controlled two-way shape memory effect in a ring-shaped bilayer 被引量:4
13
作者 Hao Li Xiaoyan Liang Weibin Song 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第6期1217-1225,共9页
Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two l... Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results. 展开更多
关键词 Shape memory polymers Two-way shape memory effect BUCKLING Ring-shaped BILAYER
在线阅读 下载PDF
New Understanding on the Memory Effect of Crystallized iPP 被引量:4
14
作者 Xiang-yang Li Zhe Ma +5 位作者 Feng-mei Su Nan Tian You-xin Ji Jie Lu Zhen Wang 李良彬 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第9期1224-1233,共10页
In this study, recovery processes of isotactic polypropylene (iPP) melted spherulites at 135 ℃ after melting at higher temperatures (170 ℃-176 ℃) were investigated with polarized optical microscopy and Fourier ... In this study, recovery processes of isotactic polypropylene (iPP) melted spherulites at 135 ℃ after melting at higher temperatures (170 ℃-176 ℃) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 ℃ and 174 ℃, the melted spherulite could recover back to the origin spberulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures. 展开更多
关键词 memory effect Isotactic polypropylene Conformational ordering Topological connectivity Aggregate.
原文传递
Magnetic reversal and magnetic memory effect in melt-spun Pr_2Fe_(14)B/α-Fe nanocomposite ribbons 被引量:3
15
作者 韩广兵 苏浩 +5 位作者 高汝伟 于淑云 康仕寿 朱明刚 李卫 X.B.Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第12期1303-1309,共7页
The influence of CoCr addition on the microstructure and magnetic properties was investigated in nanocomposite Pr2Fel4B/a-Fe alloys prepared by melt spinning. It was shown that the magnetic properties of Pr2Fel4B/ct-F... The influence of CoCr addition on the microstructure and magnetic properties was investigated in nanocomposite Pr2Fel4B/a-Fe alloys prepared by melt spinning. It was shown that the magnetic properties of Pr2Fel4B/ct-Fe nanocomposite were im- proved by an addition of 10 at.% CoCr, in particular, coercivity (Hc) from 4.9 up to 5.3 kOe, maximum energy product ((BH)max) from 10.6 up to 13.9 MGOe, and remanence (Mr) from 94.2 up to 98.4 emu/g. The field dependencies of the reversible and irreversible magnetization components were derived from the recoil loops. Combining with the initial magnetization curves, the results indi- cated that the pinning of domain walls at the grain boundaries dominated the magnetization reversal in Pr2Fe14B/ct-Fe nanocomposite alloys. The magnetic memory effect was studied by measuring the magnetic moment relaxation at a cycle negative magnetic field with time interval of 600 s. The exchange-spring magnets with magnetic memory effect have a high potential for high density magnetic recording. 展开更多
关键词 magnetization reversal exchange coupling magnetic memory effect nanocomposite alloys COERCIVITY rare earths
原文传递
Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire 被引量:3
16
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期44-48,共5页
An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way sh... An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix,as revealed by transmission electron microscopy observations and highenergy X-ray diffraction experiments.After superelastic training for 30 loading/unloading cycles at room temperature,the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2%.Furthermore,a giant recoverable strain of 11.2%was attained under a bias stress of 300 MPa in the trained microwire.These properties confer this microwire great potential for micro-actuation applications. 展开更多
关键词 Metamagnetic shape memory alloys Two-way shape memory effect MICROWIRE Recoverable strain MICROSTRUCTURE
原文传递
The regulation of memory effect and its influence on discharge properties of a dielectric barrier discharge driven by bipolar pulse at atmospheric-pressure nitrogen 被引量:2
17
作者 Rui FAN Yaogong WANG +2 位作者 Xigoning ZHANG Zhentao TU Jun ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第10期150-158,共9页
The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters,which have an ... The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters,which have an influence on the discharge characteristics.The memory effect is quantified by the measurement of‘wall voltage’through a series of reference capacitors.The influences of memory effect on the discharge properties corresponding to rising/falling time50–500 ns,pulse width 0.5–1.5μs,and frequency 200–600 Hz are analyzed.It is found that the‘wall voltage’increases from 1.4 kV to 2.4 kV with rising/falling time from 50 ns to 500 ns,it varies in the range of 0.18 kV with frequency of 200–600 Hz,and 0.17 k V with pulse width of 0.5–1.5μs.The propagation velocity of wavelike ionization under the negative pulse slows down from 2184 km s-1to 1026 km s-1 as the rising/falling time increases from 50 ns to 500 ns due to the weakening of the electric field by the surface memory effect.More intense and uniform emission can be achieved through faster rising/falling time and higher frequency based on the volume memory effect,while pulse width has less influence on the emission uniformity.Furthermore,similar laws are obtained for spectral and discharge intensity.Therefore,the memory effect is most effectively regulated by rising/falling time,and the discharge properties are affected by the surface and volume memory effect. 展开更多
关键词 memory effect discharge properties wall voltage pulse parameters
在线阅读 下载PDF
Memory Effect of Crystallization in 1-Butene/α-olefin Copolymers 被引量:2
18
作者 Chun-Jing Qv Wei Li +1 位作者 Rui-Jun Zhao Zhe Ma 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第6期576-583,共8页
The macromolecular architecture is the crucial factor in determining the arrangement of the ordering structures,which,because of the multiscale feature,may exhibit distinct melting behaviors and induce the so-called m... The macromolecular architecture is the crucial factor in determining the arrangement of the ordering structures,which,because of the multiscale feature,may exhibit distinct melting behaviors and induce the so-called memory effect to affect the following recrystallization.Until present,the correlation between the occurrence of memory effect and the intrinsic molecular structure is still far from the comprehensive understanding.In this work,four kinds of 1-butene/α-olefin random copolymers were designed and synthesized using the(pyridyl-amino)hafnium catalyst to introduce the different branches.The branch length was precisely controlled by the specific α-olefin comonomers,which include 1-hexene,1-decene,1-tetradecene,and 1-octadecene,while the branch density was tuned by the incorporation.As expected,the incorporation of α-olefin co-units to poly(1-butene)backbone decreases the non-isothermal crystallization kinetics and the degree of crystallinity.More interestingly,the resulting linear branch can induce the occurrence of memory effect and the threshold concentration of co-units(i.e.,branch density)decreases with increasing the branch length.Based on the results of these 1-butene/α-olefin copolymers with designable branches,a direct correlation with the occurrence of memory effect and the fraction of amorphous region was established,which quantitatively indicates the degree of local segregation of the crystallized poly(1-butene)sequences by theα-olefin co-units. 展开更多
关键词 memory effect 1-Butene/α-olefin copolymer Linear branch CRYSTALLINITY
原文传递
Surface traps-related nonvolatile resistive switching memory effect in a single SnO2:Sm nanowire 被引量:1
19
作者 Huiying Zhou Haiping Shi Baochang Cheng 《Journal of Semiconductors》 EI CAS CSCD 2020年第1期72-77,共6页
For nanostructure SnO2,it is very difficult for its electric properties to accurately control due to the presence of abundant surface states.The introduction of Sm can improve the traps in surface space charge region ... For nanostructure SnO2,it is very difficult for its electric properties to accurately control due to the presence of abundant surface states.The introduction of Sm can improve the traps in surface space charge region of SnO2 nanowires,resulting in a controllable storage charge effect.For the single nanowire-based two-terminal device,two surface state-related back-to-back diodes are formed.At a relatively large voltage,electrons can be injected into the traps in surface space charge region from negative electrode,resulting in a decrease of surface barrier connected with negative electrode,and contrarily electrons can be extracted from the traps in surface space charge region into positive electrode,resulting in an increase of surface barrier connected with positive electrode.The reversible injection and extraction induce a nonvolatile resistive switching memory effect. 展开更多
关键词 NANOWIRE surface state TRAP memory effect
在线阅读 下载PDF
Shape Memory Effect of As-aged Fe-14Mn-5Si-8Cr-4Ni-0.2C Alloy 被引量:1
20
作者 Yuhua WEN, Ning LI and Mingjing TU (Department of Materials Shaping and Controlling Engineering, Sichuan University, Chengdu 610065, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期424-426,共3页
The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles r... The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K. 展开更多
关键词 MN Shape memory effect of As-aged Fe-14Mn-5Si-8Cr-4Ni-0.2C Alloy As FE CR NI Si
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部