期刊文献+
共找到49,338篇文章
< 1 2 250 >
每页显示 20 50 100
A 28 nm 576K RRAM-based computing-in-memory macro featuring hybrid programming with area efficiency of 2.82 TOPS/mm^(2)
1
作者 Siqi Liu Songtao Wei +7 位作者 Peng Yao Dong Wu Lu Jie Sining Pan Jianshi Tang Bin Gao He Qian Huaqiang Wu 《Journal of Semiconductors》 2025年第6期112-119,共8页
Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CI... Computing-in-memory(CIM)has been a promising candidate for artificial-intelligent applications thanks to the absence of data transfer between computation and storage blocks.Resistive random access memory(RRAM)based CIM has the advantage of high computing density,non-volatility as well as high energy efficiency.However,previous CIM research has predominantly focused on realizing high energy efficiency and high area efficiency for inference,while little attention has been devoted to addressing the challenges of on-chip programming speed,power consumption,and accuracy.In this paper,a fabri-cated 28 nm 576K RRAM-based CIM macro featuring optimized on-chip programming schemes is proposed to address the issues mentioned above.Different strategies of mapping weights to RRAM arrays are compared,and a novel direct-current ADC design is designed for both programming and inference stages.Utilizing the optimized hybrid programming scheme,4.67×programming speed,0.15×power saving and 4.31×compact weight distribution are realized.Besides,this macro achieves a normalized area efficiency of 2.82 TOPS/mm2 and a normalized energy efficiency of 35.6 TOPS/W. 展开更多
关键词 computing-in-memory on-chip programming scheme hybrid programming resistive random access memory matrix-vector-multiplication acceleration
在线阅读 下载PDF
Enhanced memory window and efficient resistive switching in stabilized BaTiO_(3)-based RRAM through incorporation of Al_(2)O_(3) interlayer
2
作者 Akendra Singh Chabungbam Minjae Kim +2 位作者 Atul Thakre Dong-eun Kim Hyung-Ho Park 《Journal of Materials Science & Technology》 2025年第10期125-134,共10页
As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we emp... As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we employed high-quality crystalline TiN/Al_(2)O_(3)/BaTiO_(3)/Pt RRAM with an optimized thin Al_(2)O_(3) interlayer around 12 nm thick prepared using atomic layer deposition since the thickness of the interlayer affects the memory window size. After insertion of the Al_(2)O_(3) interlayer, the novel RRAM exhibited outstanding uniform resistive switching voltage and the ON/OFF memory window drastically increased from 10 to 103 without any discernible decline in performance. Moreover, the low-resistance state and high-resistance state operating current values decreased by almost one order and three orders of magnitude, respectively, thereby decreasing the power consumption for the RESET and SET processes by more than three and almost one order of magnitude, respectively. The device also exhibits multilevel resistive switching behavior when varying the applied voltage. Finally, we also developed a 6 6 crossbar array which demonstrated consistent and reliable resistive switching behavior with minimal variation. Hence, our approach holds great promise for producing state-of-the-art non-volatile resistive switching devices. 展开更多
关键词 Resistive random-access memory Resistive switching Atomic layer deposition Al_(2)O_(3)interlayer
原文传递
Enhanced Reliability and Stability of Vanadium Oxide-Based RRAM by Constructing VO_(x)/TiO_(2)/n^(++)Si p-i-n Structure
3
作者 WANG Ze ZHOU Xin +1 位作者 ASAD Khaleeq WANG Chunrui 《Journal of Donghua University(English Edition)》 2025年第3期242-250,共9页
Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive s... Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments. 展开更多
关键词 vanadium oxide bipolar resistive switching p-i-n junction resistive random-access memory(rram) titanium dioxide double-layer structure
在线阅读 下载PDF
Streamlined photonic reservoir computer with augmented memory capabilities 被引量:4
4
作者 Changdi Zhou Yu Huang +5 位作者 Yigong Yang Deyu Cai Pei Zhou Kuenyao Lau Nianqiang Li Xiaofeng Li 《Opto-Electronic Advances》 2025年第1期45-57,共13页
Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While suc... Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks. 展开更多
关键词 photonic reservoir computing machine learning vertical-cavity surface-emitting laser quasi-convolution coding augmented memory capabilities
在线阅读 下载PDF
DNA methylation regulates the extinction of fear memory 被引量:1
5
作者 Le Jiang Rui-Xue Ma +11 位作者 Er-Shu He Xiao-Ye Zheng Xin Peng Wen-Hao Ma Ying Li Han-Wei li Xue-Yan Zhang Jie-Yu Ji Yan-Jiao Li Shang-Lan Qu Li-Juan Li Zhi-Ting Gong 《World Journal of Psychiatry》 2025年第7期273-283,共11页
BACKGROUND Fear-related disorders,such as post-traumatic stress disorder(PTSD),significantly impact patients and families.Exposure therapy is a common treatment,but imp-roving its effectiveness remains a key challenge... BACKGROUND Fear-related disorders,such as post-traumatic stress disorder(PTSD),significantly impact patients and families.Exposure therapy is a common treatment,but imp-roving its effectiveness remains a key challenge.Fear conditioning and extinction in animal models offer insights into its mechanisms.Our previous research indi-cates that DNA methyltransferases play a role in fear memory renewal.AIM To investigate the role of DNA methylation in the extinction of fear memory,with the goal of identifying potential strategies to enhance the efficacy of exposure therapy for fear-related disorders.METHODS This study investigated the role of DNA methylation in fear memory extinction in mice.DNA methylation was manipulated using N-phthalyl-L-tryptophan(RG108)to reduce methylation and L-methionine injections to enhance it.Neuronal activity,and dendritic spine density was measured following extinction training.RESULTS RG108 suppressed extinction,reduced spine density,and inhibited neuronal activity.Methionine injections facilitated extinction.CONCLUSION DNA methylation is crucial for fear memory extinction.Enhancing methylation may improve the efficacy of exposure therapy,offering a potential strategy to treat fear-related disorders. 展开更多
关键词 RG108 DNA methylation Fear memory Exposure therapy EXTINCTION
暂未订购
The collaborative cross mouse for studying the effect of host genetic background on memory impairments due to obesity and diabetes 被引量:1
6
作者 Avia Paz Kareem Midlej +2 位作者 Osayd Zohud Iqbal MLone Fuad A.Iraqi 《Animal Models and Experimental Medicine》 2025年第1期126-141,共16页
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D... Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention. 展开更多
关键词 collaborative cross mouse DIABETES host genetic background memory impairments OBESITY
暂未订购
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
7
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
基于RRAM的神经常微分方程网络全模拟架构设计
8
作者 孙玉丽 燕博南 +1 位作者 陶耀宇 杨玉超 《集成电路与嵌入式系统》 2025年第10期1-9,共9页
针对神经常微分方程网络推理在冯·诺依曼架构中面临“功耗墙”和“存储墙”瓶颈、在传统存内计算架构中因存在大量数/模、模/数转换而产生过多的时间和功耗开销等问题,提出一种基于RRAM的面向神经常微分方程网络的全模拟存内计算架... 针对神经常微分方程网络推理在冯·诺依曼架构中面临“功耗墙”和“存储墙”瓶颈、在传统存内计算架构中因存在大量数/模、模/数转换而产生过多的时间和功耗开销等问题,提出一种基于RRAM的面向神经常微分方程网络的全模拟存内计算架构,能够实现纯模拟数据流的神经常微分方程网络推理。架构仿真工作在Cadence Virtuoso平台上完成,通过该平台对RRAM器件、阵列及其外围电路进行仿真与分析。架构测试工作基于40 nm工艺的RRAM测试平台和差分输入/输出PCB板,完成整个系统的功能验证。结合测试误差对神经常微分方程网络分类任务进行实验与评估,最终证明了该架构的功能性和可靠性,为后续的硬件实现和应用部署奠定了坚实基础。 展开更多
关键词 rram存内计算 神经常微分方程 全模拟数据流 架构设计
在线阅读 下载PDF
The complex roles of m^(6)A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases
9
作者 Yanxi Li Jing Xue +8 位作者 Yuejia Ma Ke Ye Xue Zhao Fangliang Ge Feifei Zheng Lulu Liu Xu Gao Dayong Wang Qing Xia 《Neural Regeneration Research》 SCIE CAS 2025年第6期1582-1598,共17页
N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis a... N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m^(6)A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m^(6)A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m^(6)A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m^(6)A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m^(6)A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m^(6)A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m^(6)A's role in neurodegenerative processes. The roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the timespecific nature of m^(6)A and its varying effects on distinct brain regions and in different environments. 展开更多
关键词 Alzheimer's disease cell self-renewal central nervous system memory MICROGLIA nerve regeneration neurodegenerative diseases NEUROGENESIS RNA methylation
暂未订购
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
10
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Exercise preconditioning alleviates ischemia-induced memory deficits by increasing circulating adiponectin
11
作者 Meifeng Zheng Borui Zhang +3 位作者 Sonata S Y Yau Kwok-Fai So Li Zhang Haining Ou 《Neural Regeneration Research》 SCIE CAS 2025年第5期1445-1454,共10页
Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy.Physical exercise enhances neurogenesis and synaptogenesis,and has been widely used for functional rehabilitatio... Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy.Physical exercise enhances neurogenesis and synaptogenesis,and has been widely used for functional rehabilitation after stroke.In this study,we determined whether exercise training before disease onset can alleviate the severity of cerebral ischemia.We also examined the role of exercise-induced circulating factors in these effects.Adult mice were subjected to 14 days of treadmill exercise training before surgery for middle cerebral artery occlusion.We found that this exercise pre-conditioning strategy effectively attenuated brain infarct area,inhibited gliogenesis,protected synaptic proteins,and improved novel object and spatial memory function.Further analysis showed that circulating adiponectin plays a critical role in these preventive effects of exercise.Agonist activation of adiponectin receptors by Adipo Ron mimicked the effects of exercise,while inhibiting receptor activation abolished the exercise effects.In summary,our results suggest a crucial role of circulating adiponectin in the effects of exercise pre-conditioning in protecting against cerebral ischemia and supporting the health benefits of exercise. 展开更多
关键词 ADIPONECTIN cerebral ischemia exercise pre-conditioning HIPPOCAMPUS memory function middle cerebral artery occlusion prefrontal cortex synaptic proteins treadmill exercise
暂未订购
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
12
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Optical memory behavior of MoS_(2) nanoflakes doped liquid crystals hybrid
13
作者 GONG Xiaohui ZHANG Hao +1 位作者 YANG Dongfang LIU Yang 《液晶与显示》 北大核心 2025年第5期665-673,共9页
The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variet... The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the vip in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications. 展开更多
关键词 optical memory behavior MoS_(2)nanoflake liquid crystal
在线阅读 下载PDF
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
14
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
暂未订购
Optimizing Stock Market Prediction Using Long Short-Term Memory Networks
15
作者 Nadia Afrin Ritu Samsun Nahar Khandakar +1 位作者 Md. Masum Bhuiyan Md. Imdadul Islam 《Journal of Computer and Communications》 2025年第2期207-222,共16页
Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The ma... Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices. 展开更多
关键词 Long Short-Term memory (LSTM) Stock Market PREDICTION Time Series Analysis Deep Learning
在线阅读 下载PDF
Knowledge Modeling and Institutional Memory at the University of Cape Coast: Examining Technology as a Mediator and Leadership Styles as a Moderator in Enhancing Administrative Efficiency
16
作者 Harriette Nusrat Manu Eleanor Afua Onyame +2 位作者 Eunice Amoako Mensah Sarah Annim Sayibu Abdul-Gafaar 《Intelligent Information Management》 2025年第1期1-30,共30页
The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relations... The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relationships between knowledge modeling, institutional memory, leadership styles, technology, and administrative efficiency at the University of Cape Coast (UCC). The study sought to identify the challenges and opportunities in integrating digital tools into administrative processes and to provide actionable recommendations for improvement. A mixed-methods research design was employed, combining quantitative analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) with qualitative thematic analysis of interviews. The findings revealed key challenges, including resistance to change, fragmented knowledge repositories, and inadequate funding, alongside opportunities such as centralized knowledge systems, cost-effective open-source tools, and capacity-building initiatives. The study highlights the importance of strategic leadership, robust policies, and investments in digital infrastructure to enhance administrative practices. Policy implications include the need for clear digital transformation guidelines and leadership training to foster innovation and collaboration. Recommendations include investing in scalable digital tools, implementing comprehensive capacity-building programs, and promoting stakeholder engagement to drive successful digital integration. These insights provide a roadmap for UCC and similar institutions seeking to optimize administrative efficiency through digital transformation. 展开更多
关键词 Knowledge Management Institutional memory Digital Integration Technology Adoption Administrative Efficiency Leadership Styles Centralised Knowledge Repositories
在线阅读 下载PDF
Ultrafast Ternary Content-Addressable Nonvolatile Floating-Gate Memory Based on van der Waals Heterostructures
17
作者 Peng Song Xuanye Liu +8 位作者 Jiequn Sun Nuertai Jiazila Chijun Wei Hui Gao Chengze Du Hui Guo Haitao Yang Lihong Bao Hong-Jun Gao 《Chinese Physics Letters》 2025年第6期297-304,I0001-I0006,共14页
As a typical in-memory computing hardware design, nonvolatile ternary content-addressable memories(TCAMs) enable the logic operation and data storage for high throughout in parallel big data processing. However,TCAM c... As a typical in-memory computing hardware design, nonvolatile ternary content-addressable memories(TCAMs) enable the logic operation and data storage for high throughout in parallel big data processing. However,TCAM cells based on conventional silicon-based devices suffer from structural complexity and large footprintlimitations. Here, we demonstrate an ultrafast nonvolatile TCAM cell based on the MoTe2/hBN/multilayergraphene (MLG) van der Waals heterostructure using a top-gated partial floating-gate field-effect transistor(PFGFET) architecture. Based on its ambipolar transport properties, the carrier type in the source/drain andcentral channel regions of the MoTe2 channel can be efficiently tuned by the control gate and top gate, respectively,enabling the reconfigurable operation of the device in either memory or FET mode. When working inthe memory mode, it achieves an ultrafast 60 ns programming/erase speed with a current on-off ratio of ∼105,excellent retention capability, and robust endurance. When serving as a reconfigurable transistor, unipolar p-typeand n-type FETs are obtained by adopting ultrafast 60 ns control-gate voltage pulses with different polarities.The monolithic integration of memory and logic within a single device enables the content-addressable memory(CAM) functionality. Finally, by integrating two PFGFETs in parallel, a TCAM cell with a high current ratioof ∼10^(5) between the match and mismatch states is achieved without requiring additional peripheral circuitry.These results provide a promising route for the design of high-performance TCAM devices for future in-memorycomputing applications. 展开更多
关键词 van der waals heterostructures floating gate memory memory computing parallel big data processing nonvolatile memory van der waals heterostructure ternary content addressable memory top gated partial floating gate field effect transistor
原文传递
Phase Field Simulation of Fracture Behavior in Shape Memory Alloys and Shape Memory Ceramics:A Review
18
作者 Junhui Hua Junyuan Xiong +2 位作者 Bo Xu Chong Wang Qingyuan Wang 《Computers, Materials & Continua》 2025年第10期65-88,共24页
Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerfu... Shape memory alloys(SMAs)and shape memory ceramics(SMCs)exhibit high recovery ability due to the martensitic transformation,which complicates the fracture mechanism of SMAs and SMCs.The phase field method,as a powerful numerical simulation tool,can efficiently resolve the microstructural evolution,multi-field coupling effects,and fracture behavior of SMAs and SMCs.This review begins by presenting the fundamental theoretical framework of the fracture phase field method as applied to SMAs and SMCs,covering key aspects such as the phase field modeling of martensitic transformation and brittle fracture.Subsequently,it systematically examines the phase field simulations of fracture behaviors in SMAs and SMCs,with particular emphasis on how crystallographic orientation,grain size,and grain boundary properties influence the crack propagation.Additionally,the interplay between martensite transformation and fracture mechanisms is analyzed to provide deeper insights into the material responses under mechanical loading.Finally,the review explores future prospects and emerging trends in phase field simulations of SMA and SMC fracture behavior,along with potential advancements in the fracture phase field method itself,including multi-physics coupling and enhanced computational efficiency for large-scale simulations. 展开更多
关键词 Phase field fracture behavior shape memory alloy shape memory ceramic
在线阅读 下载PDF
Significant Retest Effects in Spatial Working Memory Task
19
作者 MA Xianda LAN Zhaohui +3 位作者 CHEN Zhitang MONISHA M L HE Xinyi LI Weidong 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期115-120,共6页
Working memory is a core cognitive function that supports goal-directed behavior and complex thought.We developed a spatial working memory and attention test on paired symbols(SWAPS)which has been proved to be a usefu... Working memory is a core cognitive function that supports goal-directed behavior and complex thought.We developed a spatial working memory and attention test on paired symbols(SWAPS)which has been proved to be a useful and valid tool for spatial working memory and attention studies in the fields of cognitive psychology,education,and psychiatry.The repeated administration of working memory capacity tests is common in clinical and research settings.Studies suggest that repeated cognitive tests may improve the performance scores also known as retest effects.The systematic investigation of retest effects in SWAPS is critical for interpreting scientific results,but it is still not fully developed.To address this,we recruited 77 college students aged 18–21 years and used SWAPS comprising 72 trials with different memory loads,learning time,and delay span.We repeated the test once a week for five weeks to investigate the retest effects of SWAPS.There were significant retest effects in the first two tests:the accuracy of the SWAPS tests significantly increased,and then stabilized.These findings provide useful information for researchers to appropriately use or interpret the repeated working memory tests.Further experiments are still needed to clarify the factors that mediate the retest effects,and find out the cognitive mechanism that influences the retest effects. 展开更多
关键词 working memory retest effects spatial working memory and attention test on paired symbols(SWAPS) memory load
原文传递
The Astrocyte:A New Component of The Engram Regulates Memory Recall
20
作者 Ru Li Zilan Luo +2 位作者 Ding Zhong Xia Deng Liang Gao 《Neuroscience Bulletin》 2025年第7期1314-1316,共3页
At the beginning of the 20^(th)century,German scientist Richard Semon introduced the term'engram'to describe the neural substrate implicated in the processes of memory formation and retrieval[1].The trace of t... At the beginning of the 20^(th)century,German scientist Richard Semon introduced the term'engram'to describe the neural substrate implicated in the processes of memory formation and retrieval[1].The trace of the corresponding biophysical and biochemical changes in the brain responding to an external stimulus is called an engram,and understanding the physical manifestations of memory formation and recall remains a fundamental yet unresolved question[2]. 展开更多
关键词 understanding physical manifestations memory formation memory recall biophysical biochemical changes engram neural substrate ASTROCYTE
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部