期刊文献+
共找到8,620篇文章
< 1 2 250 >
每页显示 20 50 100
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
1
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 Floating offshore wind turbine(FOWT) Long short-term memory(lstm)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
Development and application of an intelligent thermal state monitoring system for sintering machine tails based on CNN-LSTM hybrid neural networks 被引量:1
2
作者 Da-lin Xiong Xin-yu Zhang +3 位作者 Zheng-wei Yu Xue-feng Zhang Hong-ming Long Liang-jun Chen 《Journal of Iron and Steel Research International》 2025年第1期52-63,共12页
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv... Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects. 展开更多
关键词 Sinter quality Convolutional neural network Long short-term memory Image segmentation FeO prediction
原文传递
Optimizing Stock Market Prediction Using Long Short-Term Memory Networks
3
作者 Nadia Afrin Ritu Samsun Nahar Khandakar +1 位作者 Md. Masum Bhuiyan Md. Imdadul Islam 《Journal of Computer and Communications》 2025年第2期207-222,共16页
Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The ma... Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices. 展开更多
关键词 Long Short-Term memory (lstm) Stock Market PREDICTION Time Series Analysis Deep Learning
在线阅读 下载PDF
Real-Time Prediction of Elbow Motion Through sEMG-Based Hybrid BP-LSTM Network
4
作者 MA Yiyuan CHEN Huaiyuan CHEN Weidong 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期452-460,共9页
In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention i... In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98. 展开更多
关键词 motion prediction surface electromyography(sEMG) long short-term memory(lstm) back-propagation neural network
原文传递
Coal burst spatio‑temporal prediction method based on bidirectional long short‑term memory network
5
作者 Xu Yang Yapeng Liu +4 位作者 Anye Cao Yaoqi Liu Changbin Wang Weiwei Zhao Qiang Niu 《International Journal of Coal Science & Technology》 2025年第1期228-245,共18页
The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster predic... The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions. 展开更多
关键词 Coal burst Spatio-temporal prediction Microseismic spatio-temporal characteristic indicators Bidirectional long short-term memory network
在线阅读 下载PDF
A leap forward in compute-in-memory system for neural network inference
6
作者 Liang Chu Wenjun Li 《Journal of Semiconductors》 2025年第4期5-7,共3页
Developing efficient neural network(NN)computing systems is crucial in the era of artificial intelligence(AI).Traditional von Neumann architectures have both the issues of"memory wall"and"power wall&quo... Developing efficient neural network(NN)computing systems is crucial in the era of artificial intelligence(AI).Traditional von Neumann architectures have both the issues of"memory wall"and"power wall",limiting the data transfer between memory and processing units[1,2].Compute-in-memory(CIM)technologies,particularly analogue CIM with memristor crossbars,are promising because of their high energy efficiency,computational parallelism,and integration density for NN computations[3].In practical applications,analogue CIM excels in tasks like speech recognition and image classification,revealing its unique advantages.For instance,it efficiently processes vast amounts of audio data in speech recognition,achieving high accuracy with minimal power consumption.In image classification,the high parallelism of analogue CIM significantly speeds up feature extraction and reduces processing time.With the boosting development of AI applications,the demands for computational accuracy and task complexity are rising continually.However,analogue CIM systems are limited in handling complex regression tasks with needs of precise floating-point(FP)calculations.They are primarily suited for the classification tasks with low data precision and a limited dynamic range[4]. 展开更多
关键词 neural network von neumann architectures compute memory INFERENCE MEMRISTOR artificial intelligence ai traditional memristor crossbarsare analogue cim
在线阅读 下载PDF
Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network
7
作者 Yongfeng Tai Xingyu Yan +3 位作者 Xiangyi Geng Lin Mu Mingshun Jiang Faye Zhang 《Structural Durability & Health Monitoring》 2025年第2期365-383,共19页
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler... The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life. 展开更多
关键词 Remaining useful life prediction rolling bearing health indicator construction multilayer perceptron bidirectional long short-term memory network
在线阅读 下载PDF
Fault Detection and Fault-Tolerant Control Based on Bi-LSTM Network and SPRT for Aircraft Braking System
8
作者 Renjie Li Yaoxing Shang +4 位作者 Jinglin Cai Xiaochao Liu Lingdong Geng Pengyuan Qi Zongxia Jiao 《Chinese Journal of Mechanical Engineering》 2025年第3期12-28,共17页
The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes th... The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft. 展开更多
关键词 Aircraft braking system Fault detection and fault-tolerant control Bidirectional long short-term memory network Sequential probability ratio test
在线阅读 下载PDF
Road pavement performance prediction using a time series long short-term memory (LSTM) model
9
作者 Chuanchuan HOU Huan WANG +1 位作者 Wei GUAN Jun CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期424-437,共14页
Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict... Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict key performance indicators(PIs)of pavement,namely the international roughness index(IRI)and rutting depth(RD).Subsequently,we propose a comprehensive performance indicator for the pavement quality index(PQI),which leverages the highway performance assessment standard method,entropy weight method,and fuzzy comprehensive evaluation method.This indicator can evaluate the overall performance condition of the pavement.The data used for the model development and analysis are extracted from tests on two full-scale accelerated test tracks,called MnRoad and RIOHTrack.Six variables are used as predictors,including temperature,precipitation,total traffic volume,asphalt surface layer thickness,pavement age,and maintenance condition.Furthermore,wavelet denoising is performed to analyze the impact of missing or abnormal data on the LSTM model accuracy.In comparison to a traditional autoregressive integrated moving average(ARIMAX)model,the proposed LSTM model performs better in terms of PI prediction and resiliency to noise.Finally,the overall prediction accuracy of our proposed performance indicator PQI is 93.8%. 展开更多
关键词 Asphalt pavement performance model International roughness index(IRI) Rutting depth(RD) Long short-term memory(lstm)model Pavement management system
原文传递
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
10
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
11
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(CNN) 长短期记忆网络(lstm) 注意力机制
原文传递
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
12
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
13
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计 被引量:2
14
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
在线阅读 下载PDF
基于LSTM的山区流域洪水预报模型研究 被引量:1
15
作者 金保明 曾泓源 +2 位作者 卢旺铭 陈朝清 康顺 《西南大学学报(自然科学版)》 北大核心 2025年第5期177-187,共11页
山区流域洪水具有突发性强、预见期短的特点,快速准确进行洪水预报始终是防汛工作的关键问题。以长短时记忆深度学习神经网络技术为基础,选取崇阳溪流域1997年到2022年共30场暴雨洪水过程作为研究数据,将其中21场洪水作为训练集,以上游... 山区流域洪水具有突发性强、预见期短的特点,快速准确进行洪水预报始终是防汛工作的关键问题。以长短时记忆深度学习神经网络技术为基础,选取崇阳溪流域1997年到2022年共30场暴雨洪水过程作为研究数据,将其中21场洪水作为训练集,以上游吴边等6个雨量站的逐时雨量、武夷山站控制断面前期流量为模型输入,武夷山站控制断面相应洪水流量为模型输出,采用均方根误差最小准则分析确定LSTM隐含层单元数和网络迭代轮数,同时在LSTM层之后设置一个全连接层,并对全连接层进行dropout处理,建立具有时间序列记忆功能的山区流域LSTM神经网络模型。运用该模型对余下的9场洪水进行测试,并与LMBP模型进行对比。结果表明:LSTM模型预测精度较高,在洪水过程、洪峰流量和洪峰出现时间预测方面精度高于LMBP模型,适用于山区流域洪水预报。 展开更多
关键词 洪水预报 lstm网络 LMBP网络 崇阳溪流域
原文传递
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
16
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
17
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于改进LSTM的网络入侵检测方法 被引量:3
18
作者 黄亮 陶达 +2 位作者 王秀木 刘静闻 刘也凡 《计算机测量与控制》 2025年第2期63-70,共8页
随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;... 随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;之后利用麻雀优化算法改进长短时记忆网络模型,并将其与卷积神经网络结合,通过强化学习进一步提升模型的检测精度;实验结果表明,基于改进长短时记忆网络的入侵检测模型的检测准确率达到了98.51%,且响应时间仅为0.84 s,漏报率和误报率分别为1.23%和0.36%;该网络入侵检测模型能够实现高效的网络入侵检测,实时保障网络安全,实现网络入侵防御,为网络安全提供可靠的技术支持;该方法在网络攻防领域具有积极意义,为相关领域研究提供了新的思路。 展开更多
关键词 逃避行为 网络入侵 检测 lstm SSA算法 CNN 强化学习
在线阅读 下载PDF
基于LSTM的舰载靶机适发窗口预报方法研究
19
作者 戴勇 马智勇 +6 位作者 刘海瑞 刘浩 章雨驰 俞梦冉 李鹏 钱征华 李彤韡 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第5期976-983,共8页
为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational ... 为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational mode decomposition,VMD)滤波,消除累积误差引起的预测结果振荡。通过有限元仿真及自主设计的船模实验平台开展波浪水池试验,采集横摇、纵摇、垂荡等关键姿态参数的时序数据。实验设置涵盖1级至5级典型海况条件。实验结果表明,该模型在升沉位移、横摇角及纵摇角预测中,均方误差(Mean squared error,MSE)最大降幅可达99.4%,MAPE降低至2.11%,验证了其工程应用的有效性。研究成果可为舰载靶机发射引导系统提供高精度的船舶运动态势预判,对提升着舰安全性具有重要工程价值。 展开更多
关键词 船舶 长短期记忆网络 姿态预测 靶机发射
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
20
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部