This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neuro...This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neurons in the hippocampal CA3 region and examine how strong coupling parameters modulate memory consolidation processes.Employing bifurcation analysis,we systematically characterize the model's complex dynamical behaviors.Subsequently,a characteristic waveform recognition algorithm enables precise feature extraction and automated detection of hippocampal sharp-wave ripples(SWRs).Our results demonstrate that neuronal rhythms exhibit a propensity for abrupt transitions near bifurcation points,facilitating the emergence of SWRs.Critically,temporal rhythmic analysis reveals that the occurrence of a bifurcation is not always sufficient for SWR formation.By integrating one-parameter bifurcation analysis with extremum analysis,we demonstrate that large-amplitude membrane potential oscillations near bifurcation points are highly conducive to SWR generation.This research elucidates the mechanistic link between changes in neuronal self-connection parameters and the evolution of rhythmic characteristics,providing deeper insights into the role of dynamical behavior in memory consolidation.展开更多
The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster predic...The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions.展开更多
Developing efficient neural network(NN)computing systems is crucial in the era of artificial intelligence(AI).Traditional von Neumann architectures have both the issues of"memory wall"and"power wall&quo...Developing efficient neural network(NN)computing systems is crucial in the era of artificial intelligence(AI).Traditional von Neumann architectures have both the issues of"memory wall"and"power wall",limiting the data transfer between memory and processing units[1,2].Compute-in-memory(CIM)technologies,particularly analogue CIM with memristor crossbars,are promising because of their high energy efficiency,computational parallelism,and integration density for NN computations[3].In practical applications,analogue CIM excels in tasks like speech recognition and image classification,revealing its unique advantages.For instance,it efficiently processes vast amounts of audio data in speech recognition,achieving high accuracy with minimal power consumption.In image classification,the high parallelism of analogue CIM significantly speeds up feature extraction and reduces processing time.With the boosting development of AI applications,the demands for computational accuracy and task complexity are rising continually.However,analogue CIM systems are limited in handling complex regression tasks with needs of precise floating-point(FP)calculations.They are primarily suited for the classification tasks with low data precision and a limited dynamic range[4].展开更多
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler...The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.展开更多
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w...Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.展开更多
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利...篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and glob...In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and globally asymptotic stability of the equilibrum position are given. Finally, two interesting examples to illustrate the theory are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12272002 and 12372061)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202310009004)+1 种基金the North China University of Technology(Grant No.2023XN075-01)the Youth Research Special Project of the North China University of Technology(Grant No.2025NCUTYRSP051)。
文摘This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal–cortical neural network model.We specifically focus on the membrane potential dynamics of excitatory neurons in the hippocampal CA3 region and examine how strong coupling parameters modulate memory consolidation processes.Employing bifurcation analysis,we systematically characterize the model's complex dynamical behaviors.Subsequently,a characteristic waveform recognition algorithm enables precise feature extraction and automated detection of hippocampal sharp-wave ripples(SWRs).Our results demonstrate that neuronal rhythms exhibit a propensity for abrupt transitions near bifurcation points,facilitating the emergence of SWRs.Critically,temporal rhythmic analysis reveals that the occurrence of a bifurcation is not always sufficient for SWR formation.By integrating one-parameter bifurcation analysis with extremum analysis,we demonstrate that large-amplitude membrane potential oscillations near bifurcation points are highly conducive to SWR generation.This research elucidates the mechanistic link between changes in neuronal self-connection parameters and the evolution of rhythmic characteristics,providing deeper insights into the role of dynamical behavior in memory consolidation.
基金supported by the National Research and Development Program(2022YFC3004603)the Jiangsu Province International Collaboration Program-Key National Industrial Technology Research and Development Cooperation Projects(BZ2023050)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20221109)the National Natural Science Foundation of China(52274098).
文摘The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions.
文摘Developing efficient neural network(NN)computing systems is crucial in the era of artificial intelligence(AI).Traditional von Neumann architectures have both the issues of"memory wall"and"power wall",limiting the data transfer between memory and processing units[1,2].Compute-in-memory(CIM)technologies,particularly analogue CIM with memristor crossbars,are promising because of their high energy efficiency,computational parallelism,and integration density for NN computations[3].In practical applications,analogue CIM excels in tasks like speech recognition and image classification,revealing its unique advantages.For instance,it efficiently processes vast amounts of audio data in speech recognition,achieving high accuracy with minimal power consumption.In image classification,the high parallelism of analogue CIM significantly speeds up feature extraction and reduces processing time.With the boosting development of AI applications,the demands for computational accuracy and task complexity are rising continually.However,analogue CIM systems are limited in handling complex regression tasks with needs of precise floating-point(FP)calculations.They are primarily suited for the classification tasks with low data precision and a limited dynamic range[4].
基金supported by the National Key Research and Development Project(Grant Number 2023YFB3709601)the National Natural Science Foundation of China(Grant Numbers 62373215,62373219,62073193)+2 种基金the Key Research and Development Plan of Shandong Province(Grant Numbers 2021CXGC010204,2022CXGC020902)the Fundamental Research Funds of Shandong University(Grant Number 2021JCG008)the Natural Science Foundation of Shandong Province(Grant Number ZR2023MF100).
文摘The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.
基金This work is supported by the National Key Research and Development Program of China(No.2023YFB4203000)the National Natural Science Foundation of China(No.U22A20178)
文摘Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.
文摘篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
文摘In this paper the globally asymptotic stability of more general two-layer nonlinear feedback associative memory neural networks with time delays is examined. The sufficient conditions of existence, uniqueness and globally asymptotic stability of the equilibrum position are given. Finally, two interesting examples to illustrate the theory are given.