期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Membrane modification in enhancement of virus removal:A critical review
1
作者 Jie Zeng Peter Desmond +5 位作者 Huu Hao Ngo Wei Lin Xiao Liu Bingsheng Liu Guibai Li An Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第12期198-216,共19页
Many waterborne diseases are related with viruses,and COVID-19 worldwide has raised the concern of virus security in water into the public horizon.Compared to other conventional water treatment processes,membrane tech... Many waterborne diseases are related with viruses,and COVID-19 worldwide has raised the concern of virus security in water into the public horizon.Compared to other conventional water treatment processes,membrane technology can achieve satisfactory virus removal with fewer chemicals,and prevent the outbreaks of viruses to a maximal extent.Researchers developed new modification methods to improve membrane performance.This review focused on the membrane modifications that enhance the performance in virus removal.The characteristics of viruses and their removal by membrane filtration were briefly generalized,and membrane modifications were systematically discussed through different virus removal mechanisms,including size exclusion,hydrophilic and hydrophobic interactions,electronic interactions,and inactivation.Advanced functional materials for membrane modification were summarized based on their nature.Furthermore,it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size.The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application. 展开更多
关键词 membrane process membrane modification Virus removal mechanisms Water treatment
原文传递
Advancements in membrane technology for efficient POME treatment:A comprehensive review and future perspectives
2
作者 Zahra Samavati Pei Sean Goh +4 位作者 Ahmad Fauzi Ismail Woei Jye Lau Alireza Samavati Be Cheer Ng Mohd Sohaimi Abdullah 《Journal of Environmental Sciences》 2025年第9期730-761,共32页
The treatment of POME related contamination is complicated due to its high organic contents and complex composition.Membrane technology is a prominent method for removing POME contaminants on account of its efficiency... The treatment of POME related contamination is complicated due to its high organic contents and complex composition.Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles,organic substances,and contaminants from wastewater,leading to the production of high-quality treated effluent.It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications.This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME.A wide range of membrane types including forward osmosis,microfiltration,ultrafiltration,nanofiltration,reverse osmosis,membrane bioreactor,photocatalytic membrane reactor,and their combinations is discussed in terms of the innovative design,treatment efficiencies and antifouling properties.The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed.In addition to discussing the obstacles that impede the broad implementation of novel membrane tech nologies in POME treatment,the article concludes by delineating potential avenues for future research and policy considerations.The understanding and insights are expected to enhance the application ofmembrane-basedmethods in order to treat POME more efficiently;this will be instrumental in the reduction of environmental pollution. 展开更多
关键词 Palm oil mill effluent membrane technology Nanofiller materials membrane surface modification Fouling prevention methods membrane cleaning techniques
原文传递
Improved blending strategy for membrane modification virtue of surface segregation using surface-tailored amphiphilic nanoparticles
3
作者 Shuai Liang Peng Gao +2 位作者 Xiaoqi Gao Kang Xiao Xia Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期113-121,共9页
Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification ... Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane.p.rodu. ction lines, possesses an advantag, eous viability in practical applications.However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively.The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed thepresence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattenng on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types. 展开更多
关键词 membrane modification Nanoparticle Hydrophilic Amphiphilic Blending
原文传递
Superhydrophobic modification of ceramic membranes for vacuum membrane distillation 被引量:11
4
作者 Yanhui Yang Qianqian Liu +4 位作者 Haizhi Wang Fusheng Ding Guoshan Jin Chunxi Li Hong Meng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1395-1401,共7页
The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H... The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H,1H,2H,2H-per fluorooctyltrichlorosilane or 1H,1H,2H,2H-per fluorodecyltriethoxysilane and followed by ultraviolet irradiation.The surface water contact angle was improved from 46° of original ceramic membrane to 159°,which exhibited a stable and excellent superhydrophobic effect.The modi fied membranes showed a high flux of 27.28 kg·m^(-2)·h^(-1) and simultaneously maintained an excellent retention rate of 99.99%,when used in vacuum membrane distillation process for treatment of a 1 wt% NaCl(75 °C) aqueous solution.These results suggested that superhydrophobic modi fication of ceramic surface is a facile and cost-effective way to achieve higher membrane distillation performance.The superhydrophobically-modi fied ceramic membrane with an excellent desalination capacity would show considerable potential in practical membrane distillation utilizations. 展开更多
关键词 Superhydrophobic modification Fluoroalkylsilane Ultraviolet irradiation Ceramic membrane Vacuum membrane distillation
在线阅读 下载PDF
Atomic layer deposition of Al_2O_3 on porous polypropylene hollow fibers for enhanced membrane performances 被引量:1
5
作者 Xiaojuan Jia Zexian Low +2 位作者 He Chen Sen Xiong Yong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第4期695-700,共6页
Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, ... Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition. 展开更多
关键词 Polypropylene hollow fiber membranes Atomic layer deposition Alumina deposition Anti-fouling Surface modification
在线阅读 下载PDF
Cable-like Au@SiO2 Janus composite nanorods
6
作者 Tian-Hao Han Fu-Xin Liang Zhen-Zhong Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期353-356,共4页
Cable-like Au@SiO2 Janus composite nanorods with PS and PEG grafting on both ends respectively are fabricated by skiving in combination of a post favorable modification. The cable-like Au@SiO2 composite nanofibers are... Cable-like Au@SiO2 Janus composite nanorods with PS and PEG grafting on both ends respectively are fabricated by skiving in combination of a post favorable modification. The cable-like Au@SiO2 composite nanofibers are synthesized in the channel of porous anodic aluminium oxide (AAO) membrane. After skiving, the corresponding composite nanorods are obtained. Following, PEG-SH and PS-SH are conjugated onto the two ends of the nanorods by a selective partial modification, respectively. Length and diameter of the Au@SiO2 Janus composite nanorods can be tuned controllably. It can be extended to fabricate a variety of different Janus nanorods with different compositions and microstructures. 展开更多
关键词 AAO membrane Janus Nanomds Skiving Selective modification
原文传递
Effects of Nano-patterning Modification on the Cell Proliferation and Adhesion in Burn Wound Healing of Regenerated Silk Fibroin Membrane
7
作者 ZHANG Yan-ping WEN Yu-qing 《Chinese Journal of Biomedical Engineering(English Edition)》 CAS 2023年第3期131-138,共8页
Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly... Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly divided into three groups:group A received treatment involving nano-patterning on the surface of regenerated silk fibroin membrane,group B received treatment with recombinant human epidermal growth factor gel,and group C received the same treatment with recombinant human epidermal growth factor gel,with 20 cases in each group.Wound healing,surface structure,protein adsorption,cell proliferation and adhesion were assessed at intervals of 5th,15th and 25th d after treatment.Results:The findings indicated that:(1)The duration and pace of wound healing in groups A and B surpassed those of group C,with group A exhibiting superior results compared to group B(P<0.05);(2)Histopathological analysis revealed a progressive increase in neovascularization and fibroblast count in wound tissue across the 5th,15th,and 25th days for all three groups,with group C exhibiting a higher count of neovascularization and fibroblasts in unhealed tissue compared to groups A and B.(3)The levels of basic calponin expression in group A and group B showed an increase on the 5th and 15th day,followed by stabilization on the 25th day.In group C,the expression of basic calponin was initially high on the 5th day,and then stabilized on the 15th and 25th day(P<0.05);(4)The expression of fibroblast proliferating cell nuclear antigen in the wound tissue of mice in all three groups peaked on the 15th day and subsequently declined.The expression of PCNA in group A and group B was higher than that in group C at each time point,with group A exhibiting higher levels than group B(P<0.05);(5)As wounds healed,there was a reduction in apoptotic cells within the wound tissues of mice across three groups,with group a exhibiting a lower count compared to groups B and C(P<0.05).Conclusion:Nanopatterning on the surface of regenerated silk fibroin membrane can enhance the biocompatibility of burn wound treatment and promote the proliferation and adhesion of reparative cells. 展开更多
关键词 burn wound nano-patterning modification on regenerated silk fibroin membrane cell proliferation and adhesion recombinant human epidermal growth factor gel
暂未订购
Functional Polymeric Membrane Materials:A Perspective from Versatile Methods and Modification to Potential Applications
8
作者 Mohammed Kamal Hadi Xiangya Wang +2 位作者 Yuanyou Peng Sambasivam Sangaraju Fen Ran 《Polymer Science & Technology》 2025年第5期366-412,共47页
The field of membrane science and technology has been one of the most trending research topics in the last few decades,owing to the large number of membrane-based applications and the expected contribution of membrane... The field of membrane science and technology has been one of the most trending research topics in the last few decades,owing to the large number of membrane-based applications and the expected contribution of membrane technology in areas such as water security,environmental wellbeing,and energy storage.Due to extensive research,membrane preparation techniques are divided into a wide range of classifications,largely depending on the materials involved,the preparation techniques,and the implemented applications.Most effective and high-performing membranes are modified or fabricated from polymeric-based materials with polymer backbone structures.Therefore,the structure and effectiveness of the polymeric materials depend on the preparation method,which influences the final polymer features.Several polymeric membrane materials may need to be chemically modified by using polymerization techniques.Thus,we noticed a clear gap in documenting the commonly used polymerization methods that yield high-performance polymeric membranes for several applications.By correlating between the preparation/modification technique and application aspects,this review article uniquely covers the membrane material preparation through polymerization methods,starting from the traditional polymerization methods up to the nontraditional living free-radical polymerization methods such as RAFT,ATRP,etc.The review also discusses other classes of polymerization,such as interfacial polymerization and click chemistry reactions.Highlighting core issues such as polymerization techniques is important in order to further understand the membrane’s related polymerization chemistry,linking between the polymeric modifier preparation techniques and their influence on performance aspects.Moreover,the review also aims to provide a solid understanding of membrane preparation chemistry in order to push membrane technology further and overcome some of the milestone problems in this field. 展开更多
关键词 Polymerization Methods membrane Technology membrane modification Living Polymerization Free Radical Polymerization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部