Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel...Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.展开更多
High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating gen...High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.展开更多
This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation ...This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation techniques,pest and disease control,harvesting,packaging,storage,waste management,and production records for netted melon grown in facilities.The technical regulations aim to standardize the protected production of netted melon and enhance the level of standardized and normative production technology.展开更多
Melon is a globally cultivated horticultural crop with a predominantly hybrid commercial seed market in China.Seedling morphology,particularly hypocotyl color,is a valuable trait for rapid F1 hybrid seed purity assess...Melon is a globally cultivated horticultural crop with a predominantly hybrid commercial seed market in China.Seedling morphology,particularly hypocotyl color,is a valuable trait for rapid F1 hybrid seed purity assessment.While green hypocotyls are common,white hypocotyls are rare in melon germplasm.This study identified a mutant with white hypocotyl but green leaves from the heavy ion beam mutant library.Genetic analysis revealed that a single recessive gene controlled the white hypocotyl,designated CmGhc1.A single-base deletion in the fifth exon of CmGhc1 led to a truncated CmGhc1 lacking the HTH-MYB DNA binding domain,likely affecting its transcriptional activity.CmGhc1 was localized in the nucleus,and yeast two-hybrid analysis and a dual-LUC assay demonstrated it as a transcription repressor.Furthermore,a KASP marker(hc1)was developed and verified as a functional marker for breeding white hypocotyl germplasms in melon.RNA-seq data revealed that CmGhc1 significantly affected the transcription of genes related to chlorophyll metabolism and photosynthesis in hypocotyl.In summary,these findings contribute to our understanding of chloroplast biogenesis and provide a valuable tool for melon breeding.展开更多
Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of conti...Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of continuous melon cropping remain poorly understood.Here,we employed the metagenomic techniques to comparatively investigate the bulk and rhizosphere soil microbial communities of major melon-producing regions(where the duration of continuous melon cropping ranges from 1 to 30 a)in the eastern and southern parts of Xinjiang Uygur Autonomous Region,China.The results showed that soil pH clearly decreased with increasing melon cropping duration,while soil electrical conductivity(EC)and the other soil nutrient indices increased with increasing melon cropping duration(with the exception of AN and TK in the southern melon-producing region).The most dominant bacterial phyla were Proteobacteria and Actinobacteria,and the most abundant fungal phyla were Ascomycota and Mucoromycota.Redundancy analysis(RDA)indicated that soil pH and EC had no significant effects on the bacterial communities.However,after many years of continuous melon cropping in the southern melon-producing region,fungal communities were significantly negatively correlated with soil pH and significantly positively correlated with soil EC(P<0.050).Co-occurrence network analysis showed that continuous melon cropping increased the complexity but decreased the connectivity of the cross-domain microbial networks.Moreover,the enrichment patterns of microorganisms in the main microbial network modules varied significantly with the duration of continuous melon cropping.Based on the analysis of keystone taxa,we found that continuous melon cropping increased some plant pathogens(e.g.,Fusarium and Stagonospora)but decreased beneficial bacteria(e.g.,Mesorhizobium and Pseudoxanthomonas).In conclusion,this study has greatly enhanced the understanding of the effects of continuous melon cropping on alterations in the microbial community structure and ecological networks in Xinjiang.展开更多
Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associa...Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associated with increased fluoride anion distribution in the body,leading to hypertension.AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate(WSP)biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.METHODS Forty-two(42)male Wistar albino rats were assigned at random into 7 groups of 6 rats per group(control group and six experimental groups).The experimental groups received various treatments that lasted for two weeks.Twenty-four hours after the last administration,hemodynamic parameters were evaluated,rats were sacrificed,blood samples were collected,and the heart was harvested.Blood serum was assessed for cardiac troponin I(cTnI),creatine kinase-MB(CK-MB),and lactate dehydrogenase(LDH).At the same time,the heart homogenate was assayed for angiotensin-1 converting enzyme(ACE)activity,proinflammatory cytokines,nitric oxide concentrations,and antioxidant status.Cardiac tissues were stained with Hematoxylin and Eosin,Masson’s Trichrome,and cTnI.Also,the safety of the WSP biscuit diet was evaluated.RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues,activities of ACE,and concentrations of cTnI,CK-MB,LDH,tumor necrosis factor-alpha,and interleukin 1 beta,while there was a reduction in the concentration of nitric oxide and antioxidants;however,their alterations were significantly prevented in WSP-biscuit-fed rats.The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10%and 20%inclusion.CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.展开更多
Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influenci...Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).展开更多
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert...Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).展开更多
基金supported by the Innovation and Development Program of Beijing Vegetable Research Center,China(KYCX202301)the Construction of Cucurbits Collaboration and Innovation Center,China(XTCX202301)+3 种基金the Youth Research Fund of Beijing Academy of Agriculture and Forestry Sciences,China(QNJJ202426)the National Natural Science Foundation of China(U21A20229 and 32102397)the Scientific Research Foundation of the Higher Education Institutions for Distinguished Young Scholars in Anhui Province,China(2022AH020037)and the Key Research and Development Projects of Anhui Province,China(2023z04020019)。
文摘Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.32102383,32225044 and 32130093)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QC075)+1 种基金the Taishan Scholar Foundation of the People's Government of Shandong Province(Grant No.ts20190947)the Qingdao Agricultural University Doctoral Start-Up Fund。
文摘High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.
基金Supported by The Teaching Reform Research Project of Yantai Institute of China Agricultural University(202302Ks)Yantai Local Standard Revision Program(DB 3706/T 73-2021).
文摘This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation techniques,pest and disease control,harvesting,packaging,storage,waste management,and production records for netted melon grown in facilities.The technical regulations aim to standardize the protected production of netted melon and enhance the level of standardized and normative production technology.
基金financially supported by the grants from the earmarked fund for Xinjiang Agriculture Research System,China(XJARS-06)the Key Research and Development Task Special Project of Xinjiang,China(2022B02002-3)+1 种基金the Tianshan Talent Training Program,China(2023TSYCLJ0015)the Key Research and Development Program of Xinjiang Uygur Autonomous Region,China(2023B02017).
文摘Melon is a globally cultivated horticultural crop with a predominantly hybrid commercial seed market in China.Seedling morphology,particularly hypocotyl color,is a valuable trait for rapid F1 hybrid seed purity assessment.While green hypocotyls are common,white hypocotyls are rare in melon germplasm.This study identified a mutant with white hypocotyl but green leaves from the heavy ion beam mutant library.Genetic analysis revealed that a single recessive gene controlled the white hypocotyl,designated CmGhc1.A single-base deletion in the fifth exon of CmGhc1 led to a truncated CmGhc1 lacking the HTH-MYB DNA binding domain,likely affecting its transcriptional activity.CmGhc1 was localized in the nucleus,and yeast two-hybrid analysis and a dual-LUC assay demonstrated it as a transcription repressor.Furthermore,a KASP marker(hc1)was developed and verified as a functional marker for breeding white hypocotyl germplasms in melon.RNA-seq data revealed that CmGhc1 significantly affected the transcription of genes related to chlorophyll metabolism and photosynthesis in hypocotyl.In summary,these findings contribute to our understanding of chloroplast biogenesis and provide a valuable tool for melon breeding.
基金funded by the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(2022A02007-4)the Xinjiang Uygur Autonomous Region Natural Science Foundation Youth Project(2024D01B31)the Graduate Student Research Innovation Project of Xinjiang Agricultural University(XJAUGRI2024033).
文摘Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of continuous melon cropping remain poorly understood.Here,we employed the metagenomic techniques to comparatively investigate the bulk and rhizosphere soil microbial communities of major melon-producing regions(where the duration of continuous melon cropping ranges from 1 to 30 a)in the eastern and southern parts of Xinjiang Uygur Autonomous Region,China.The results showed that soil pH clearly decreased with increasing melon cropping duration,while soil electrical conductivity(EC)and the other soil nutrient indices increased with increasing melon cropping duration(with the exception of AN and TK in the southern melon-producing region).The most dominant bacterial phyla were Proteobacteria and Actinobacteria,and the most abundant fungal phyla were Ascomycota and Mucoromycota.Redundancy analysis(RDA)indicated that soil pH and EC had no significant effects on the bacterial communities.However,after many years of continuous melon cropping in the southern melon-producing region,fungal communities were significantly negatively correlated with soil pH and significantly positively correlated with soil EC(P<0.050).Co-occurrence network analysis showed that continuous melon cropping increased the complexity but decreased the connectivity of the cross-domain microbial networks.Moreover,the enrichment patterns of microorganisms in the main microbial network modules varied significantly with the duration of continuous melon cropping.Based on the analysis of keystone taxa,we found that continuous melon cropping increased some plant pathogens(e.g.,Fusarium and Stagonospora)but decreased beneficial bacteria(e.g.,Mesorhizobium and Pseudoxanthomonas).In conclusion,this study has greatly enhanced the understanding of the effects of continuous melon cropping on alterations in the microbial community structure and ecological networks in Xinjiang.
文摘Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associated with increased fluoride anion distribution in the body,leading to hypertension.AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate(WSP)biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.METHODS Forty-two(42)male Wistar albino rats were assigned at random into 7 groups of 6 rats per group(control group and six experimental groups).The experimental groups received various treatments that lasted for two weeks.Twenty-four hours after the last administration,hemodynamic parameters were evaluated,rats were sacrificed,blood samples were collected,and the heart was harvested.Blood serum was assessed for cardiac troponin I(cTnI),creatine kinase-MB(CK-MB),and lactate dehydrogenase(LDH).At the same time,the heart homogenate was assayed for angiotensin-1 converting enzyme(ACE)activity,proinflammatory cytokines,nitric oxide concentrations,and antioxidant status.Cardiac tissues were stained with Hematoxylin and Eosin,Masson’s Trichrome,and cTnI.Also,the safety of the WSP biscuit diet was evaluated.RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues,activities of ACE,and concentrations of cTnI,CK-MB,LDH,tumor necrosis factor-alpha,and interleukin 1 beta,while there was a reduction in the concentration of nitric oxide and antioxidants;however,their alterations were significantly prevented in WSP-biscuit-fed rats.The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10%and 20%inclusion.CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.
基金supported by Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences(Grant No.xjnkq-2021011)Key Research and Development Program of Hainan Province(Grant No.ZDYF2025XDNY089)+2 种基金Project of Fund for Stable Support to Agricultural Sci-Tech Renovation(Grant No.xjnkywdzc-2023001-35)Guangxi Agricultural Science and Technology Project,China Agriculture Research System of MOF and MORA(CARS-25)the Fundamental Research Funds for the Central Universities(Grant No.2662024JC004)。
文摘Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金supported by the National Natural Science Foundation of China[32202050]the National Natural Science Foundation of China[32101965]+2 种基金China Postdoctoral Science Foundation[2020M671373]Jiangsu Postdoctoral Research Funding Program[2020Z070]Innovation Training Program for College Students[202310299649X]。
文摘Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).