High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating gen...High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.展开更多
Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel...Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.展开更多
This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation ...This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation techniques,pest and disease control,harvesting,packaging,storage,waste management,and production records for netted melon grown in facilities.The technical regulations aim to standardize the protected production of netted melon and enhance the level of standardized and normative production technology.展开更多
Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of conti...Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of continuous melon cropping remain poorly understood.Here,we employed the metagenomic techniques to comparatively investigate the bulk and rhizosphere soil microbial communities of major melon-producing regions(where the duration of continuous melon cropping ranges from 1 to 30 a)in the eastern and southern parts of Xinjiang Uygur Autonomous Region,China.The results showed that soil pH clearly decreased with increasing melon cropping duration,while soil electrical conductivity(EC)and the other soil nutrient indices increased with increasing melon cropping duration(with the exception of AN and TK in the southern melon-producing region).The most dominant bacterial phyla were Proteobacteria and Actinobacteria,and the most abundant fungal phyla were Ascomycota and Mucoromycota.Redundancy analysis(RDA)indicated that soil pH and EC had no significant effects on the bacterial communities.However,after many years of continuous melon cropping in the southern melon-producing region,fungal communities were significantly negatively correlated with soil pH and significantly positively correlated with soil EC(P<0.050).Co-occurrence network analysis showed that continuous melon cropping increased the complexity but decreased the connectivity of the cross-domain microbial networks.Moreover,the enrichment patterns of microorganisms in the main microbial network modules varied significantly with the duration of continuous melon cropping.Based on the analysis of keystone taxa,we found that continuous melon cropping increased some plant pathogens(e.g.,Fusarium and Stagonospora)but decreased beneficial bacteria(e.g.,Mesorhizobium and Pseudoxanthomonas).In conclusion,this study has greatly enhanced the understanding of the effects of continuous melon cropping on alterations in the microbial community structure and ecological networks in Xinjiang.展开更多
Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associa...Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associated with increased fluoride anion distribution in the body,leading to hypertension.AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate(WSP)biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.METHODS Forty-two(42)male Wistar albino rats were assigned at random into 7 groups of 6 rats per group(control group and six experimental groups).The experimental groups received various treatments that lasted for two weeks.Twenty-four hours after the last administration,hemodynamic parameters were evaluated,rats were sacrificed,blood samples were collected,and the heart was harvested.Blood serum was assessed for cardiac troponin I(cTnI),creatine kinase-MB(CK-MB),and lactate dehydrogenase(LDH).At the same time,the heart homogenate was assayed for angiotensin-1 converting enzyme(ACE)activity,proinflammatory cytokines,nitric oxide concentrations,and antioxidant status.Cardiac tissues were stained with Hematoxylin and Eosin,Masson’s Trichrome,and cTnI.Also,the safety of the WSP biscuit diet was evaluated.RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues,activities of ACE,and concentrations of cTnI,CK-MB,LDH,tumor necrosis factor-alpha,and interleukin 1 beta,while there was a reduction in the concentration of nitric oxide and antioxidants;however,their alterations were significantly prevented in WSP-biscuit-fed rats.The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10%and 20%inclusion.CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.展开更多
Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influenci...Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).展开更多
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert...Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).展开更多
[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the develo...[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the development of watermelon and melon industries in Hainan Province. [Method] By using the sowing area, total yield, and yield per unit area of watermelon and melon in Hainan Province as research u- nits, the yield comparative advantage (YCA), efficiency comparative advantage (E- CA), scale comparative advantage (SCA), concentration ratio comparative advantage (CRCA), comprehensive comparative advantage (CCA), ratio of yield per unit area (RYPA), sowing area ratio (SAR), and distribution characteristics of watermelon and melon were systematically analyzed. By referring to the agricultural statistic data of 18 counties (cities) in Hainan Province, indexes for each research unit (i.e., the YCA index, ECA index, SCA index, CRCA index, CCA index, RYPA index, and SAR index) were established and calculated to determine the comparative advantage of watermelon and melon production in Hainan Province. A spatial expression of the research result on a map was conducted by using GIS software. [Result] Seven counties (cities) exhibited comparative advantages in watermelon production, namely, Lingshui, Wanning, Wenchang, Dongfang, Sanya, Ledong, and Changjiang. The Eastern and Southern Hainan Provinces had CCAs, and the Western and Northern Hainan Provinces could be reserved for future development. For melon production, four counties (cities) exhibited comparative advantages, namely, Ledong, Lingshui, Sanya, and Dongfang. The Southern Hainan Province had CCA, whereas the West- ern Hainan Province could be reserved for later development. [Conclusion] The result has showed that establishing watermelon and melon as dominant agricultural prod- ucts is necessary for the future development of the industry and for the formulation of a layout of regions with advantages, where key support and construction should be provided preferentially with the aim to raise the yield, quality, and market com- petitiveness of products.展开更多
The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on sna...The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on snake melon Botry- tis cinerea than original nano-Cu2O drug with the same mass concentration, and inhibitory effects are positively correlated with concentration. Correlation coefficients of the toxicity regression equation are 0.892 2 and 0.996 1, effective concentration EC50 of original nano-Cu2O drug and that of nano-Cu2O suspension are 3 948.9 and 167.9 mg/kg. Original nano-Cu2O drug has an inhibitive effect on snake melon Botrytis cinerea, but the inhibition of nano-Cu2O suspension is more obvious.展开更多
Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographi...Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographical provinces of Zimbabwe. In addition, 15 plants representing three commercial varieties developed in the United States (USA) were analyzed for comparison. A total of 65 alleles were detected among all the watermelon accessions. For the 13 polymorphic EST-SSR loci, number of alleles per locus varied from 2 to 13, with an average of 5 alleles per locus. Values for the polymorphic information content increased as the number of alleles increased, and varied from 0.15 to 0.77 with an average of 0.54 suggesting sufficient discriminatory power. Both cluster analysis and principal coordinate analysis (PCA) produced two major clusters;one with the 22 cow-melon accessions and the other with the 16 sweet watermelon accessions. Within the sweet watermelon group, two distinct sub-clusters formed, one of which contained only two of the commercial varieties from USA. Partitioning of genetic variation in the Zimbabwean material using analysis of molecular variation (AMOVA) revealed that 64% of the total variation resides between the two major forms, i.e. sweet watermelons and cow-melons, 28% between accessions within forms and 8% within accessions. The EST-SSR markers revealed a somewhat higher diversity in sweet watermelon accessions compared to that of cow-melons. This finding is contrary to previous reports using other markers (genomic SSR loci or RAPD) and/or a plant material that is likely to have experienced more stringent selection procedures compared to the landraces analyzed in our study.展开更多
Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular chara...Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular characterization of 48 watermelon accessions collected from National Genebank of Zimbabwe using 9 SSR markers generated a total of 49 putative alleles. The average number of alleles detected by each primer was 5.4. Analysis of molecular variance within and among accessions of watermelons revealed that only 39% of the total variation resides between these two groups (cow-melons and sweet watermelons), 24% between accession within groups and 37% within accessions. Multivariate analyses employed provide evidence of the existence of introgression between sweet water melons and cow melons, as reflected by some accessions of cow melons, clustering into a hybridogenous group. Most of watermelon accessions within the hybridogenous group [A (II)] were collected from drier communal areas, while those accessions within the cow melon group [A (I)] are mostly from research centers. The separation of cow melons into distinct groups could be indicative of a possible formation of an isolated evolutionary unit.展开更多
This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of i...This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of its synthetic analogue has been developed. Also, a route for the synthesis of para pheromone, raspberry ketone, has been proposed.展开更多
Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plant...Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, a-eleostearic acid) and proteins (a-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents.展开更多
Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of ...Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.展开更多
The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmn...The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.展开更多
In this study, Zaotian No.l, a major melon cultivar in Anhui Province, was used as the test material. At the three-leaf stage, the seedlings of Zaotian No.1 were transferred into a light incubator at day/night tempera...In this study, Zaotian No.l, a major melon cultivar in Anhui Province, was used as the test material. At the three-leaf stage, the seedlings of Zaotian No.1 were transferred into a light incubator at day/night temperature of 5 ℃(3/5 ℃. The photoperiod was 12 L:12 D, and the light intensity was 100 iJmoV(rn=.s). The incu- bation lasted for 8 d. After the incubation, the changes in metabolite contents in melon seedling leaves were studied. The results showed that with the proceeding of low temperature stress, the H~ content was increased first and then decreased; the MDA content was increased in overall; the soluble sugar content and soluble protein content were also increased compared with those in the control group. It was speculated that low temperature stress affected activities of enzymes in melon seedling leaves, and long-term low temperature stress caused cold damage to melon seedlings, leading changes in metabolite contents in melon seedling leaves. Under low temperature stress, the physiological characteristics of plant can be studied by investigating changes in contents of main metabolites. This will provide a theo- retical basis for breeding of cold resistant cultivars, as well as facility cultivation.展开更多
It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan P...It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan Province of China.In this study,the pathogen was identified as SLCCNV through biological and molecular characterization.The isolate(SLCCNV-HN)possess a bipartite genome,DNA-A(HM566112.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062251.1)pumpkin and SLCCNV-Hn61(AM260205.1)squash isolates from China,whereas DNA-B(HM566113.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062252.1).Phylogenetic analyses based on the full-length SLCCNV-HN DNA-A and-B sequences indicated that SLCCNV-HN melon isolate is clustered with SLCCNV-Hn pumpkin,SLCCNV-Hn61 and SLCCNV-SY squash isolates from southern China,forming an independent cluster.Infectious clone of SLCCNV-HN was constructed and the melon plants were inoculated and the infection rate is 100%,the systemic symptoms in melon showed identical to those of melon plants infected in fields.Additionally,melon plants transmission of this virus by Bemisia tabaci with a transmission rate of 95%(19/20)showed leaf curl and dwarf symptoms 15 days post transmission,thereby fulfilling Koch’s postulates.Analysis of genomic organization and phylogenetic trees indicated that SLCCNV-HN melon isolate belongs to the Begomovirus genus.To the best of our knowledge,this is the first characterization of meloninfecting SLCCNV through its genome,infectious clone and transmission.展开更多
The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spe...The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.32102383,32225044 and 32130093)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QC075)+1 种基金the Taishan Scholar Foundation of the People's Government of Shandong Province(Grant No.ts20190947)the Qingdao Agricultural University Doctoral Start-Up Fund。
文摘High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.
基金supported by the Innovation and Development Program of Beijing Vegetable Research Center,China(KYCX202301)the Construction of Cucurbits Collaboration and Innovation Center,China(XTCX202301)+3 种基金the Youth Research Fund of Beijing Academy of Agriculture and Forestry Sciences,China(QNJJ202426)the National Natural Science Foundation of China(U21A20229 and 32102397)the Scientific Research Foundation of the Higher Education Institutions for Distinguished Young Scholars in Anhui Province,China(2022AH020037)and the Key Research and Development Projects of Anhui Province,China(2023z04020019)。
文摘Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.
基金Supported by The Teaching Reform Research Project of Yantai Institute of China Agricultural University(202302Ks)Yantai Local Standard Revision Program(DB 3706/T 73-2021).
文摘This paper summarized the technical regulations for protected production of netted melon in Yantai City,primarily including technical measures such as the environmental requirements of the production area,cultivation techniques,pest and disease control,harvesting,packaging,storage,waste management,and production records for netted melon grown in facilities.The technical regulations aim to standardize the protected production of netted melon and enhance the level of standardized and normative production technology.
基金funded by the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(2022A02007-4)the Xinjiang Uygur Autonomous Region Natural Science Foundation Youth Project(2024D01B31)the Graduate Student Research Innovation Project of Xinjiang Agricultural University(XJAUGRI2024033).
文摘Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of continuous melon cropping remain poorly understood.Here,we employed the metagenomic techniques to comparatively investigate the bulk and rhizosphere soil microbial communities of major melon-producing regions(where the duration of continuous melon cropping ranges from 1 to 30 a)in the eastern and southern parts of Xinjiang Uygur Autonomous Region,China.The results showed that soil pH clearly decreased with increasing melon cropping duration,while soil electrical conductivity(EC)and the other soil nutrient indices increased with increasing melon cropping duration(with the exception of AN and TK in the southern melon-producing region).The most dominant bacterial phyla were Proteobacteria and Actinobacteria,and the most abundant fungal phyla were Ascomycota and Mucoromycota.Redundancy analysis(RDA)indicated that soil pH and EC had no significant effects on the bacterial communities.However,after many years of continuous melon cropping in the southern melon-producing region,fungal communities were significantly negatively correlated with soil pH and significantly positively correlated with soil EC(P<0.050).Co-occurrence network analysis showed that continuous melon cropping increased the complexity but decreased the connectivity of the cross-domain microbial networks.Moreover,the enrichment patterns of microorganisms in the main microbial network modules varied significantly with the duration of continuous melon cropping.Based on the analysis of keystone taxa,we found that continuous melon cropping increased some plant pathogens(e.g.,Fusarium and Stagonospora)but decreased beneficial bacteria(e.g.,Mesorhizobium and Pseudoxanthomonas).In conclusion,this study has greatly enhanced the understanding of the effects of continuous melon cropping on alterations in the microbial community structure and ecological networks in Xinjiang.
文摘Sodium fluoride(NaF)is a daily necessity consumed as the major ingredient of fluorinated drinking water,milk,salts,mouthwashes,toothpaste,and dentistry medications.However,the use of NaF products has also been associated with increased fluoride anion distribution in the body,leading to hypertension.AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate(WSP)biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.METHODS Forty-two(42)male Wistar albino rats were assigned at random into 7 groups of 6 rats per group(control group and six experimental groups).The experimental groups received various treatments that lasted for two weeks.Twenty-four hours after the last administration,hemodynamic parameters were evaluated,rats were sacrificed,blood samples were collected,and the heart was harvested.Blood serum was assessed for cardiac troponin I(cTnI),creatine kinase-MB(CK-MB),and lactate dehydrogenase(LDH).At the same time,the heart homogenate was assayed for angiotensin-1 converting enzyme(ACE)activity,proinflammatory cytokines,nitric oxide concentrations,and antioxidant status.Cardiac tissues were stained with Hematoxylin and Eosin,Masson’s Trichrome,and cTnI.Also,the safety of the WSP biscuit diet was evaluated.RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues,activities of ACE,and concentrations of cTnI,CK-MB,LDH,tumor necrosis factor-alpha,and interleukin 1 beta,while there was a reduction in the concentration of nitric oxide and antioxidants;however,their alterations were significantly prevented in WSP-biscuit-fed rats.The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10%and 20%inclusion.CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.
基金supported by Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences(Grant No.xjnkq-2021011)Key Research and Development Program of Hainan Province(Grant No.ZDYF2025XDNY089)+2 种基金Project of Fund for Stable Support to Agricultural Sci-Tech Renovation(Grant No.xjnkywdzc-2023001-35)Guangxi Agricultural Science and Technology Project,China Agriculture Research System of MOF and MORA(CARS-25)the Fundamental Research Funds for the Central Universities(Grant No.2662024JC004)。
文摘Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金supported by the National Natural Science Foundation of China[32202050]the National Natural Science Foundation of China[32101965]+2 种基金China Postdoctoral Science Foundation[2020M671373]Jiangsu Postdoctoral Research Funding Program[2020Z070]Innovation Training Program for College Students[202310299649X]。
文摘Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).
基金Supported by China Agricultural Research System(CARS-26)~~
文摘[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the development of watermelon and melon industries in Hainan Province. [Method] By using the sowing area, total yield, and yield per unit area of watermelon and melon in Hainan Province as research u- nits, the yield comparative advantage (YCA), efficiency comparative advantage (E- CA), scale comparative advantage (SCA), concentration ratio comparative advantage (CRCA), comprehensive comparative advantage (CCA), ratio of yield per unit area (RYPA), sowing area ratio (SAR), and distribution characteristics of watermelon and melon were systematically analyzed. By referring to the agricultural statistic data of 18 counties (cities) in Hainan Province, indexes for each research unit (i.e., the YCA index, ECA index, SCA index, CRCA index, CCA index, RYPA index, and SAR index) were established and calculated to determine the comparative advantage of watermelon and melon production in Hainan Province. A spatial expression of the research result on a map was conducted by using GIS software. [Result] Seven counties (cities) exhibited comparative advantages in watermelon production, namely, Lingshui, Wanning, Wenchang, Dongfang, Sanya, Ledong, and Changjiang. The Eastern and Southern Hainan Provinces had CCAs, and the Western and Northern Hainan Provinces could be reserved for future development. For melon production, four counties (cities) exhibited comparative advantages, namely, Ledong, Lingshui, Sanya, and Dongfang. The Southern Hainan Province had CCA, whereas the West- ern Hainan Province could be reserved for later development. [Conclusion] The result has showed that establishing watermelon and melon as dominant agricultural prod- ucts is necessary for the future development of the industry and for the formulation of a layout of regions with advantages, where key support and construction should be provided preferentially with the aim to raise the yield, quality, and market com- petitiveness of products.
文摘The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on snake melon Botry- tis cinerea than original nano-Cu2O drug with the same mass concentration, and inhibitory effects are positively correlated with concentration. Correlation coefficients of the toxicity regression equation are 0.892 2 and 0.996 1, effective concentration EC50 of original nano-Cu2O drug and that of nano-Cu2O suspension are 3 948.9 and 167.9 mg/kg. Original nano-Cu2O drug has an inhibitive effect on snake melon Botrytis cinerea, but the inhibition of nano-Cu2O suspension is more obvious.
文摘Fifteen expressed sequence tag (EST)-derived simple sequence repeats (EST-SSRs) were used to investigate genetic diversity in 139 plants obtained from seeds of 35 watermelon accessions collected from all the geographical provinces of Zimbabwe. In addition, 15 plants representing three commercial varieties developed in the United States (USA) were analyzed for comparison. A total of 65 alleles were detected among all the watermelon accessions. For the 13 polymorphic EST-SSR loci, number of alleles per locus varied from 2 to 13, with an average of 5 alleles per locus. Values for the polymorphic information content increased as the number of alleles increased, and varied from 0.15 to 0.77 with an average of 0.54 suggesting sufficient discriminatory power. Both cluster analysis and principal coordinate analysis (PCA) produced two major clusters;one with the 22 cow-melon accessions and the other with the 16 sweet watermelon accessions. Within the sweet watermelon group, two distinct sub-clusters formed, one of which contained only two of the commercial varieties from USA. Partitioning of genetic variation in the Zimbabwean material using analysis of molecular variation (AMOVA) revealed that 64% of the total variation resides between the two major forms, i.e. sweet watermelons and cow-melons, 28% between accessions within forms and 8% within accessions. The EST-SSR markers revealed a somewhat higher diversity in sweet watermelon accessions compared to that of cow-melons. This finding is contrary to previous reports using other markers (genomic SSR loci or RAPD) and/or a plant material that is likely to have experienced more stringent selection procedures compared to the landraces analyzed in our study.
文摘Watermelon research in Southern Africa, has predominantly observed the clear existence of the sweet watermelon and cow melon forms of watermelon, cultivated on farm and even some occurring in the wild. Molecular characterization of 48 watermelon accessions collected from National Genebank of Zimbabwe using 9 SSR markers generated a total of 49 putative alleles. The average number of alleles detected by each primer was 5.4. Analysis of molecular variance within and among accessions of watermelons revealed that only 39% of the total variation resides between these two groups (cow-melons and sweet watermelons), 24% between accession within groups and 37% within accessions. Multivariate analyses employed provide evidence of the existence of introgression between sweet water melons and cow melons, as reflected by some accessions of cow melons, clustering into a hybridogenous group. Most of watermelon accessions within the hybridogenous group [A (II)] were collected from drier communal areas, while those accessions within the cow melon group [A (I)] are mostly from research centers. The separation of cow melons into distinct groups could be indicative of a possible formation of an isolated evolutionary unit.
文摘This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of its synthetic analogue has been developed. Also, a route for the synthesis of para pheromone, raspberry ketone, has been proposed.
基金supported by NIH Grants CA182872 and CA190291 to S.Anant.S.Anant is an Eminent Scientist of the Kansas Biosciences Authority
文摘Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, a-eleostearic acid) and proteins (a-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents.
基金financially supported by the Key Project of Liaoning Province(2011215003)the Project of the Science and Technology Bureau of Shenyang,China(F12-277-1-26)
文摘Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and the Natural Science Foundation of Zheji-ang Province (No. 301267), China
文摘The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.
基金Supported by College Students’Innovative Entrepreneurial Training Program of Anhui Province(AH201410364052)Earmarked Fund for Vegetable Industrial Technology System in Anhui Province(WNK[2011]6)National Natural Science Foundation of China(31201623)~~
文摘In this study, Zaotian No.l, a major melon cultivar in Anhui Province, was used as the test material. At the three-leaf stage, the seedlings of Zaotian No.1 were transferred into a light incubator at day/night temperature of 5 ℃(3/5 ℃. The photoperiod was 12 L:12 D, and the light intensity was 100 iJmoV(rn=.s). The incu- bation lasted for 8 d. After the incubation, the changes in metabolite contents in melon seedling leaves were studied. The results showed that with the proceeding of low temperature stress, the H~ content was increased first and then decreased; the MDA content was increased in overall; the soluble sugar content and soluble protein content were also increased compared with those in the control group. It was speculated that low temperature stress affected activities of enzymes in melon seedling leaves, and long-term low temperature stress caused cold damage to melon seedlings, leading changes in metabolite contents in melon seedling leaves. Under low temperature stress, the physiological characteristics of plant can be studied by investigating changes in contents of main metabolites. This will provide a theo- retical basis for breeding of cold resistant cultivars, as well as facility cultivation.
基金supported by the National Natural Science Foundation of China (31701941 and 31401810)the grants from the earmarked fund for China Agriculture Research System (CARS-26-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP) (CAAS-ASTIP-2018-ZFRI-08)
文摘It has been reported that squash leaf curl China virus(SLCCNV)infects some Cucurbitaceae crops except for melon(Cucumis melo L.).A new disease of melon exhibiting severe leaf curl and dwarfing was observed in Hainan Province of China.In this study,the pathogen was identified as SLCCNV through biological and molecular characterization.The isolate(SLCCNV-HN)possess a bipartite genome,DNA-A(HM566112.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062251.1)pumpkin and SLCCNV-Hn61(AM260205.1)squash isolates from China,whereas DNA-B(HM566113.1)with the highest nucleotide identity(99%)to SLCCNV-Hn(MF062252.1).Phylogenetic analyses based on the full-length SLCCNV-HN DNA-A and-B sequences indicated that SLCCNV-HN melon isolate is clustered with SLCCNV-Hn pumpkin,SLCCNV-Hn61 and SLCCNV-SY squash isolates from southern China,forming an independent cluster.Infectious clone of SLCCNV-HN was constructed and the melon plants were inoculated and the infection rate is 100%,the systemic symptoms in melon showed identical to those of melon plants infected in fields.Additionally,melon plants transmission of this virus by Bemisia tabaci with a transmission rate of 95%(19/20)showed leaf curl and dwarf symptoms 15 days post transmission,thereby fulfilling Koch’s postulates.Analysis of genomic organization and phylogenetic trees indicated that SLCCNV-HN melon isolate belongs to the Begomovirus genus.To the best of our knowledge,this is the first characterization of meloninfecting SLCCNV through its genome,infectious clone and transmission.
基金supported by Hebei Provincial Key Research Projects(19227114D)the Vegetable Industry Innovation Team Project of Hebei Modern Agricultural Industrial Technology System(HBCT2018030208).
文摘The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.