In this paper, we use a spectral model for the medium-range numerical weather forecast to discuss the impact of the diurnal variation of solar radiation on the medium-range weather processes. Under the tests of two ty...In this paper, we use a spectral model for the medium-range numerical weather forecast to discuss the impact of the diurnal variation of solar radiation on the medium-range weather processes. Under the tests of two typical winter and summer cases, we find that the influences of the diurnal variation of solar radiation on summer weather are really important, especially on its rainfall, surface heat transport and 500 hPa height field. On winter weather, however, the influences are very weak.展开更多
By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather pro...By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather processes of the rain during the onset period of the summer monsoon in Eastern Asia in 1979 were studied numerically.According to the initial field of 12GMT 14 June 1979,five-day numerical experiments with or without the orographic effects were carried out respectively.The results show that the Plateau can influence the precipitation significantly during the summer monsoon season.Although the summer monsoon is the result of the seasonal variations of the global circulation and the heating difference between land and sea,it is influenced evidently by the Plateau in medium-range processes.There are very complex interactions between the mountain and diabatic heating effects so that both of them should be considered correctly in the general circulation models in order to describe the nature of the atmosphere reliably.展开更多
Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used ...Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area.展开更多
In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represen...In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represented variables, temperature, geopotential height and orography, are replaced by their deviations from the reference atmosphere. Two modified semi- implicit schemes have been proposed to alleviate the computational instability due to the introduction of reference atmosphere. Concerning the deviation of surface geopotential height from reference atmosphere, an exact computational formulation has been used instead of the approximate one in the earlier work. To re duce aliasing errors in the computations of the deviation of the surface geopotential height, a spectral fit has been used slightly to modify the original Gaussian grid-point values of orography.A series of experiments has been performed in order to assess the impact of the reference atmosphere on ECMWF medium- range forecasts at the resolution T21, T42 and T63. The results we have obtained reveal that the reference atmosphere introduced in ECMWF spectral model is generally beneficial to the mean statistical scores of 1000-200 hPa height 10-day forecasts over the globe. In the Southern Hemisphere, it is a clear improvement for T21, T42 and T63 throughout the 10-day forecast period. In the Northern Hemisphere, the impact of the reference atmos phere on anomaly correlation is positive for resolution T21, a very slightly damaging at T42 and almost neutral at T63 in the range of day 1 to day 4. Beyond the day 4 there is a clear improvement at all resolutions.展开更多
Precise high-temperature weather forecasts are essential, as heatwaves are increasing in frequency under the ongoing climate change. Land-surface schemes have been demonstrated to be crucial to numerical weather predi...Precise high-temperature weather forecasts are essential, as heatwaves are increasing in frequency under the ongoing climate change. Land-surface schemes have been demonstrated to be crucial to numerical weather predictions.However, few studies have explored the impact of land surface schemes on short-range high-temperature weather forecasts via operational numerical weather prediction models. To evaluate the impact of the soil thermal process on high-temperature weather forecasts, we coupled the soil thermal process of the state-of-the-art Common Land Model(CoLM) with the South China operational numerical weather prediction model(CMA-TRAMS) and compared the coupled model with the original CMA-TRAMS, which incorporated the Simplified Model for land Surface(SMS). Contrast experiments based on two versions of CMA-TRAMS were conducted for the year 2022 when persistent extreme heatwaves were observed in Central-East China. The results are as follows:(1) Short-range high-temperature weather forecasts were sensitive to soil thermal process schemes. The original CMA-TRAMS clearly underestimated the summertime near-surface air temperature(T2m) over almost all areas of China, whereas the CoLM led to a reduction of the negative biases by approximately 0.5°C.(2) The more accurate initial soil temperatures and the deeper soil structure used in the CoLM test contributed to actual predictions of soil heat flux, soil temperature, and T2m. Nevertheless, the SMS test failed to capture upward heat transport from deeper to shallower soil layers at night due to the shallow soil structure and lower accuracy of the bottom and initial soil temperatures.(3) Higher soil temperatures resulted in increased near-surface moisture and cloud cover in the CoLM test, which led to the warmer soil and further mitigated the cold biases of T2m through reduced longwave and shortwave radiation losses at the land surface.展开更多
This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of compreh...This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.展开更多
Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the gen...Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.展开更多
In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from...In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from 1 to 31 July 1982. The potential vorticity field is taken as the physical quantity relating the wave activity flux to the variation of the subtropical high over the Western Pacific. It is found that the three-dimensional wave activity flux is a powerful means for diagnosis of the variation of the subtropical high over the Western Pacific: The region of the subtropical high is just the confluence area of wave energy, whose changes in intensity and range decide the variation of the subtropical high. The confluence of wave energy comes from the monsoon flow in low latitudes, the Meiyu rain belts in middle latitudes and the heating fields on the eastern side of the Qinghai-Xizang Plateau. The relation between these sources and the subtropical high displays the self-adjusting mechanism among members of East-Asia summer monsoon.展开更多
In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the...In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.展开更多
Kumtagh Desert is one of the eight biggest deserts in China, but poorly investigated before our interdisciplinary study because of the difficulty of access. In this paper, 33 representative surface sediment samples we...Kumtagh Desert is one of the eight biggest deserts in China, but poorly investigated before our interdisciplinary study because of the difficulty of access. In this paper, 33 representative surface sediment samples were collected from the Kumtagh Desert and analyzed in the laboratory to obtain heavy mineral components and geochemical element contents. Results show that various kinds of heavy minerals are present in these samples, with high levels of epidote and hornblende. Si and AI take up a large part of chemical composition. Compared with the average composition of geochemical elements of the upper continental crust (UCC), except Si and Ca, all elements are depleted to a certain degree; Fe, Mg, Ca, P, Ti and Mn have high correlation coefficients in their contents. The mineral and geochemical composition of the Kumtagh Desert sediments have a similarity with that of rocks of Altyn Tagh Mountains, and the surface sediments of the alluvial/diluvial fans around the Altyn Tagh Mountains and that of the Taklamakan Desert, indicating that one major source of the Kumtagh Desert sediments is located in the Altyn Tagh Mountains. Alluvial deposits and lake sediments in Aqik valley and lower reaches of Shule River are prone to be eroded and transported by the strong northeasterly wind into the Kumtagh Desert, forming another source of the desert deposits. An A-CN-K ternary diagram shows that a weak degree chemical weathering by the loss of Na and K occurred in these sediments, whereas A-CNK-FM ternary diagram suggests that Fe and Mg have undergone a significant chemical differentiation. Physical weathering processes cause easy erosion and enrichment in fine particles for mafic minerals, thus coarse desert sand particles can be relatively depleted in Fe and Mg. The mineral and geochemical composition of sediments in arid regions experiencing less chemical weathering are mostly affected by physical weathering.展开更多
In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the ...In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.展开更多
Water samples from twenty one boreholes were collected within University of Lagos and analyzed for physical properties, trace elements and cations using inductively coupled plasma optical emission spectrometry (ICP-OE...Water samples from twenty one boreholes were collected within University of Lagos and analyzed for physical properties, trace elements and cations using inductively coupled plasma optical emission spectrometry (ICP-OES). Physical analysis of the samples shows slight acidity and alkalinity with 78% of the samples exceeded recommended standards. They can be classified as fresh water based on TDS and EC. Chloride concentrations fall within water standards in most samples while Al, Na, Pb and Br exceeded recommended standards in most samples. Gibbs plot, relationship between total cations, Na + K, Ca + Mg and Cl showed that all the groundwater samples fall in the water-rock interaction field which suggests that the weathering of rocks and influence of sea water primarily controls the major chemistry of groundwater in the area. Sodium Absorption Ratio (SAR) for all the water samples was less than 10 and excellent for irrigation purpose. Only 33% of water samples were suitable for irrigation based on Soluble Sodium Percentage (SSP) and Magnesium Adsorption Ratio (MAR), whereas based on Kellys Ratios (KR) all the water samples were not good for irrigation purpose having KR greater than 1. Fifty percent of the water samples showed pollution index (PI) above 1 with highest contribution (37.8%) from lead (Pb). Mn, Al, Ni, Fe and As contributed 29.3%, 19.13%, 8.66%, 4.25% and 0.82% respectively.展开更多
[Objective] The aim was to study the formation and development of a heavy snow in Benxi area. [Method] Based on conventional meteorological data, the formation and development of a heavy snow in Benxi area from Decemb...[Objective] The aim was to study the formation and development of a heavy snow in Benxi area. [Method] Based on conventional meteorological data, the formation and development of a heavy snow in Benxi area from December 4th to 5th in 2009 were analyzed from the aspects of weather situation evolution and physical quantity field feature. [Result] The heavy snow was caused by upper trough and North China cyclone. In this process, there was upper level divergence and lower level convergence over Benxi area, and it was warm at low attitude and cold at high attitude; southwest jet at low attitude transported water vapor from Bohai Sea to eastern Liaoning, which provided good water vapor condition for snow, but it didn’t reach heavy snow due to inadequate ascending force. The development of Ural Mountains high ridge played an important role in the snow process and the strengthened high ridge moving northward was beneficial to the southward movement of cold air and deepening of upper trough. Analysis on physical quantity field could provide reference for predicting beginning and ending time and strength of heavy snow. [Conclusion] The study could provide basis for the forecast of heavy snow.展开更多
Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ...Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ensemble prediction) models and NCEP (National Centers for Environmental Prediction) data, and using synoptic and dynamic methods and other research methods, the rainfall weather process in most of China from October 3-6, 2021 is analyzed. The results show that: 1) this process had a long duration, large cumulative rainfall and strong extreme. 2) The warm and wet flow and the cold air intersected in the central and western regions of China and Northeast China, which resulted in a regional rainstorm process within ten days. 3) There was a low-level jet moving from Guizhou and Hunan to the south of Northeast China, bringing a lot of water vapor. To sum up, the rainfall process of this round has a certain relationship with the adjustment of atmospheric circulation.展开更多
A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in ...A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.展开更多
In order to reduce the transverse corner cracks of high strength weathering steel Q450NQR1,the factors influencing transverse corner cracks on continuously cast slab,such as level fluctuation of molten steel in mold,m...In order to reduce the transverse corner cracks of high strength weathering steel Q450NQR1,the factors influencing transverse corner cracks on continuously cast slab,such as level fluctuation of molten steel in mold,mold taper,primary cooling,mold powder,secondary cooling,nitrogen content in steel,spray nozzle structure,processing parameters and equipment of CC,etc.,were analyzed.Based on this,a series of comprehensive countermeasures have been proposed.The operation shows by the use of key technologies,including stabilizing steel level,optimizing the mold taper,weakening the primary cooling and the secondary cooling,reforming the mold powder,and adjusting spray nozzle structure,the transverse corner cracks on continuously cast slab have been significantly reduced,and the edge cracks on hot rolled sheet have been eliminated due to the transverse corner cracks.The qualified slabs are delivered to produce weathering cold forming sectional steel,whose yield strength is greater than 450MPa.展开更多
Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nu...Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nutrients.However,long term weathering processes could improve residue properties to support the plant establishment.Here we investigate the development of bacterial communities and the geochemical drivers in bauxite residue,using Illumina high-throughput sequencing technology.Long term weathering reduced the pH in bauxite residue and increased its nutrients content.The bacterial community also significantly developed during long term weathering processes.Taxonomic analysis revealed that natural weathering processes encouraged the populations of Proteobacteria,Chloroflexi,Acidobacteria and Planctomycetes,whereas reducing the populations of Firmicutes and Actinobacteria.Redundancy analysis(RDA)indicated that total organic carbon(TOC)was the dominant factors affecting microbial structure.The results have demonstrated that natural weathering processes improved the soil development on the abandoned bauxite residue disposal areas,which also increased our understanding of the correlation between microbial variation and residue properties during natural weathering processes in Bauxite residue disposal areas.展开更多
The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology forma...The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.展开更多
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h...Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively展开更多
[Objective] The research aimed to analyze a regional rainstorm weather process in north-central Henan Province. [Method] Based on the conventional meteorological observation data and the rainfall data of Henan Meteoro...[Objective] The research aimed to analyze a regional rainstorm weather process in north-central Henan Province. [Method] Based on the conventional meteorological observation data and the rainfall data of Henan Meteorological Station, the diagnostic analysis of atmospheric thermodynamics and dynamics on a rainstorm weather process in north-central Henan Province on July 19, 2010 was carried out. The characteristics of physical quantity field and the evolution of weather situation in north-central Henan Province when the rainstorm happened were studied. [Result] Western Pacific subtropical high strengthened to extend westward. The dynamic uplifting of low vortex at the middle and low layers, the strong water vapor transportation of southwest low-level jet caused the regional rainstorm weather process in north-central Henan Province. The diagnostic results of physical quantity showed that the deep, thick wet layer and the sustained water vapor convergence provided the abundant water vapor for rainstorm generation. The positive vorticity advection center developed and spread from northwest to southeast, which was favorable for the development of vertical movement. The structure maintenance of positive vorticity at the middle and low layers, negative vorticity at the middle and high levels provided the power condition for the regional rainstorm generation. The pumping effect of convergence at the middle and low layers, divergence at the high layer was favorable for the strengthening of vertical ascending motion at the low layer. The uplifting effect of dew point front at the middle and low layers triggered the release of unstable energy. The confrontation of warm and cold air was one of the important reasons for the regional rainstorm. TBB characteristic analysis showed that TBB was from -60 to -50 ℃ in north-central Henan Province in the whole strong precipitation time, and the moving speed was equivalent to that of southwest vortex. The low-value belt of TBB corresponded with the rainstorm occurrence zone in Henan, and the minimum-value center of TBB was basically consistent with the strongest center of precipitation. [Conclusion] The research provided the scientific basis for the short-term forecast of rainstorm.展开更多
文摘In this paper, we use a spectral model for the medium-range numerical weather forecast to discuss the impact of the diurnal variation of solar radiation on the medium-range weather processes. Under the tests of two typical winter and summer cases, we find that the influences of the diurnal variation of solar radiation on summer weather are really important, especially on its rainfall, surface heat transport and 500 hPa height field. On winter weather, however, the influences are very weak.
文摘By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather processes of the rain during the onset period of the summer monsoon in Eastern Asia in 1979 were studied numerically.According to the initial field of 12GMT 14 June 1979,five-day numerical experiments with or without the orographic effects were carried out respectively.The results show that the Plateau can influence the precipitation significantly during the summer monsoon season.Although the summer monsoon is the result of the seasonal variations of the global circulation and the heating difference between land and sea,it is influenced evidently by the Plateau in medium-range processes.There are very complex interactions between the mountain and diabatic heating effects so that both of them should be considered correctly in the general circulation models in order to describe the nature of the atmosphere reliably.
文摘Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area.
文摘In this paper, the authors develop the earlier work of Chen Jiabin et al. (1986). In order to reduce spectral truncation errors, the reference atmosphere has been introduced in ECMWF model, and the spectrally-represented variables, temperature, geopotential height and orography, are replaced by their deviations from the reference atmosphere. Two modified semi- implicit schemes have been proposed to alleviate the computational instability due to the introduction of reference atmosphere. Concerning the deviation of surface geopotential height from reference atmosphere, an exact computational formulation has been used instead of the approximate one in the earlier work. To re duce aliasing errors in the computations of the deviation of the surface geopotential height, a spectral fit has been used slightly to modify the original Gaussian grid-point values of orography.A series of experiments has been performed in order to assess the impact of the reference atmosphere on ECMWF medium- range forecasts at the resolution T21, T42 and T63. The results we have obtained reveal that the reference atmosphere introduced in ECMWF spectral model is generally beneficial to the mean statistical scores of 1000-200 hPa height 10-day forecasts over the globe. In the Southern Hemisphere, it is a clear improvement for T21, T42 and T63 throughout the 10-day forecast period. In the Northern Hemisphere, the impact of the reference atmos phere on anomaly correlation is positive for resolution T21, a very slightly damaging at T42 and almost neutral at T63 in the range of day 1 to day 4. Beyond the day 4 there is a clear improvement at all resolutions.
基金National Natural Science Foundation of China(U2242203, 42305164, 42175105)Key Innovation Team of China Meteorological Administration (CMA2023ZD08)Science and Technology Research Project of Guangdong Meteorological Service (GRMC2023M31)。
文摘Precise high-temperature weather forecasts are essential, as heatwaves are increasing in frequency under the ongoing climate change. Land-surface schemes have been demonstrated to be crucial to numerical weather predictions.However, few studies have explored the impact of land surface schemes on short-range high-temperature weather forecasts via operational numerical weather prediction models. To evaluate the impact of the soil thermal process on high-temperature weather forecasts, we coupled the soil thermal process of the state-of-the-art Common Land Model(CoLM) with the South China operational numerical weather prediction model(CMA-TRAMS) and compared the coupled model with the original CMA-TRAMS, which incorporated the Simplified Model for land Surface(SMS). Contrast experiments based on two versions of CMA-TRAMS were conducted for the year 2022 when persistent extreme heatwaves were observed in Central-East China. The results are as follows:(1) Short-range high-temperature weather forecasts were sensitive to soil thermal process schemes. The original CMA-TRAMS clearly underestimated the summertime near-surface air temperature(T2m) over almost all areas of China, whereas the CoLM led to a reduction of the negative biases by approximately 0.5°C.(2) The more accurate initial soil temperatures and the deeper soil structure used in the CoLM test contributed to actual predictions of soil heat flux, soil temperature, and T2m. Nevertheless, the SMS test failed to capture upward heat transport from deeper to shallower soil layers at night due to the shallow soil structure and lower accuracy of the bottom and initial soil temperatures.(3) Higher soil temperatures resulted in increased near-surface moisture and cloud cover in the CoLM test, which led to the warmer soil and further mitigated the cold biases of T2m through reduced longwave and shortwave radiation losses at the land surface.
文摘This paper conducted a more comprehensive review and comparative analysis of the two heavy to blizzard processes that occurred in the Beijing area during December 13-15,2023,and February 20-21,2024,in terms of comprehensive weather situation diagnosis,forecasting,and decision-making services,and summarized the meteorological service support experience of such heavy snow weather processes.It was found that both blizzard processes were jointly influenced by the 700 hPa southwesterly warm and humid jet stream and the near-surface easterly backflow;the numerical forecast was relatively accurate in the overall description of the snowfall process,and the forecast bias of the position of the 700 hPa southwesterly warm and humid jet stream determined the bias of the snowfall magnitude forecast at a certain point;when a deviation was found between the actual snowfall and the forecast,the cause should be analyzed in a timely manner,and the warning and forecast conclusions should be updated.With the full cooperation of relevant departments,it can greatly make up for the deviation of the early forecast snowfall amount,and ensure the safety and efficiency of people's travel.
文摘Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.
文摘In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from 1 to 31 July 1982. The potential vorticity field is taken as the physical quantity relating the wave activity flux to the variation of the subtropical high over the Western Pacific. It is found that the three-dimensional wave activity flux is a powerful means for diagnosis of the variation of the subtropical high over the Western Pacific: The region of the subtropical high is just the confluence area of wave energy, whose changes in intensity and range decide the variation of the subtropical high. The confluence of wave energy comes from the monsoon flow in low latitudes, the Meiyu rain belts in middle latitudes and the heating fields on the eastern side of the Qinghai-Xizang Plateau. The relation between these sources and the subtropical high displays the self-adjusting mechanism among members of East-Asia summer monsoon.
基金Projects(51274152,41472071)supported by the National Natural Science Foundation of ChinaProject(T201506)supported by the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China
文摘In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.
基金The Global Change Program of China, No.2010CB950203 China National S&T Basic Work Program, No.2006FY110800 Natural Science Foundation of China, No.40930103, 41021002
文摘Kumtagh Desert is one of the eight biggest deserts in China, but poorly investigated before our interdisciplinary study because of the difficulty of access. In this paper, 33 representative surface sediment samples were collected from the Kumtagh Desert and analyzed in the laboratory to obtain heavy mineral components and geochemical element contents. Results show that various kinds of heavy minerals are present in these samples, with high levels of epidote and hornblende. Si and AI take up a large part of chemical composition. Compared with the average composition of geochemical elements of the upper continental crust (UCC), except Si and Ca, all elements are depleted to a certain degree; Fe, Mg, Ca, P, Ti and Mn have high correlation coefficients in their contents. The mineral and geochemical composition of the Kumtagh Desert sediments have a similarity with that of rocks of Altyn Tagh Mountains, and the surface sediments of the alluvial/diluvial fans around the Altyn Tagh Mountains and that of the Taklamakan Desert, indicating that one major source of the Kumtagh Desert sediments is located in the Altyn Tagh Mountains. Alluvial deposits and lake sediments in Aqik valley and lower reaches of Shule River are prone to be eroded and transported by the strong northeasterly wind into the Kumtagh Desert, forming another source of the desert deposits. An A-CN-K ternary diagram shows that a weak degree chemical weathering by the loss of Na and K occurred in these sediments, whereas A-CNK-FM ternary diagram suggests that Fe and Mg have undergone a significant chemical differentiation. Physical weathering processes cause easy erosion and enrichment in fine particles for mafic minerals, thus coarse desert sand particles can be relatively depleted in Fe and Mg. The mineral and geochemical composition of sediments in arid regions experiencing less chemical weathering are mostly affected by physical weathering.
基金Project supported by the National Natural Science Foundation of China(51274152 and 41472071)the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China(T201506)
文摘In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.
文摘Water samples from twenty one boreholes were collected within University of Lagos and analyzed for physical properties, trace elements and cations using inductively coupled plasma optical emission spectrometry (ICP-OES). Physical analysis of the samples shows slight acidity and alkalinity with 78% of the samples exceeded recommended standards. They can be classified as fresh water based on TDS and EC. Chloride concentrations fall within water standards in most samples while Al, Na, Pb and Br exceeded recommended standards in most samples. Gibbs plot, relationship between total cations, Na + K, Ca + Mg and Cl showed that all the groundwater samples fall in the water-rock interaction field which suggests that the weathering of rocks and influence of sea water primarily controls the major chemistry of groundwater in the area. Sodium Absorption Ratio (SAR) for all the water samples was less than 10 and excellent for irrigation purpose. Only 33% of water samples were suitable for irrigation based on Soluble Sodium Percentage (SSP) and Magnesium Adsorption Ratio (MAR), whereas based on Kellys Ratios (KR) all the water samples were not good for irrigation purpose having KR greater than 1. Fifty percent of the water samples showed pollution index (PI) above 1 with highest contribution (37.8%) from lead (Pb). Mn, Al, Ni, Fe and As contributed 29.3%, 19.13%, 8.66%, 4.25% and 0.82% respectively.
文摘[Objective] The aim was to study the formation and development of a heavy snow in Benxi area. [Method] Based on conventional meteorological data, the formation and development of a heavy snow in Benxi area from December 4th to 5th in 2009 were analyzed from the aspects of weather situation evolution and physical quantity field feature. [Result] The heavy snow was caused by upper trough and North China cyclone. In this process, there was upper level divergence and lower level convergence over Benxi area, and it was warm at low attitude and cold at high attitude; southwest jet at low attitude transported water vapor from Bohai Sea to eastern Liaoning, which provided good water vapor condition for snow, but it didn’t reach heavy snow due to inadequate ascending force. The development of Ural Mountains high ridge played an important role in the snow process and the strengthened high ridge moving northward was beneficial to the southward movement of cold air and deepening of upper trough. Analysis on physical quantity field could provide reference for predicting beginning and ending time and strength of heavy snow. [Conclusion] The study could provide basis for the forecast of heavy snow.
文摘Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ensemble prediction) models and NCEP (National Centers for Environmental Prediction) data, and using synoptic and dynamic methods and other research methods, the rainfall weather process in most of China from October 3-6, 2021 is analyzed. The results show that: 1) this process had a long duration, large cumulative rainfall and strong extreme. 2) The warm and wet flow and the cold air intersected in the central and western regions of China and Northeast China, which resulted in a regional rainstorm process within ten days. 3) There was a low-level jet moving from Guizhou and Hunan to the south of Northeast China, bringing a lot of water vapor. To sum up, the rainfall process of this round has a certain relationship with the adjustment of atmospheric circulation.
基金This work is financially supported by the Research Grant Council of HKSAR Government and Hong Kong Jockey Club CharitiesTrust.
文摘A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.
文摘In order to reduce the transverse corner cracks of high strength weathering steel Q450NQR1,the factors influencing transverse corner cracks on continuously cast slab,such as level fluctuation of molten steel in mold,mold taper,primary cooling,mold powder,secondary cooling,nitrogen content in steel,spray nozzle structure,processing parameters and equipment of CC,etc.,were analyzed.Based on this,a series of comprehensive countermeasures have been proposed.The operation shows by the use of key technologies,including stabilizing steel level,optimizing the mold taper,weakening the primary cooling and the secondary cooling,reforming the mold powder,and adjusting spray nozzle structure,the transverse corner cracks on continuously cast slab have been significantly reduced,and the edge cracks on hot rolled sheet have been eliminated due to the transverse corner cracks.The qualified slabs are delivered to produce weathering cold forming sectional steel,whose yield strength is greater than 450MPa.
基金supported by the National Natural Science Foundation of China(Grant No.41371475)the InnovativeProject of Independent Exploration of Central South University(No.1053320171026)
文摘Bauxite residue is the industrial waste generated from alumina production and commonly deposited in impoundments.These sites are bare of vegetation due to the extreme high salinity and alkalinity,as well as lack of nutrients.However,long term weathering processes could improve residue properties to support the plant establishment.Here we investigate the development of bacterial communities and the geochemical drivers in bauxite residue,using Illumina high-throughput sequencing technology.Long term weathering reduced the pH in bauxite residue and increased its nutrients content.The bacterial community also significantly developed during long term weathering processes.Taxonomic analysis revealed that natural weathering processes encouraged the populations of Proteobacteria,Chloroflexi,Acidobacteria and Planctomycetes,whereas reducing the populations of Firmicutes and Actinobacteria.Redundancy analysis(RDA)indicated that total organic carbon(TOC)was the dominant factors affecting microbial structure.The results have demonstrated that natural weathering processes improved the soil development on the abandoned bauxite residue disposal areas,which also increased our understanding of the correlation between microbial variation and residue properties during natural weathering processes in Bauxite residue disposal areas.
基金the Research Grant Council of HKSAP Government and Hong Kong Jockey Club Charities Trust(No.HKU7005/01E).
文摘The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.
文摘Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively
文摘[Objective] The research aimed to analyze a regional rainstorm weather process in north-central Henan Province. [Method] Based on the conventional meteorological observation data and the rainfall data of Henan Meteorological Station, the diagnostic analysis of atmospheric thermodynamics and dynamics on a rainstorm weather process in north-central Henan Province on July 19, 2010 was carried out. The characteristics of physical quantity field and the evolution of weather situation in north-central Henan Province when the rainstorm happened were studied. [Result] Western Pacific subtropical high strengthened to extend westward. The dynamic uplifting of low vortex at the middle and low layers, the strong water vapor transportation of southwest low-level jet caused the regional rainstorm weather process in north-central Henan Province. The diagnostic results of physical quantity showed that the deep, thick wet layer and the sustained water vapor convergence provided the abundant water vapor for rainstorm generation. The positive vorticity advection center developed and spread from northwest to southeast, which was favorable for the development of vertical movement. The structure maintenance of positive vorticity at the middle and low layers, negative vorticity at the middle and high levels provided the power condition for the regional rainstorm generation. The pumping effect of convergence at the middle and low layers, divergence at the high layer was favorable for the strengthening of vertical ascending motion at the low layer. The uplifting effect of dew point front at the middle and low layers triggered the release of unstable energy. The confrontation of warm and cold air was one of the important reasons for the regional rainstorm. TBB characteristic analysis showed that TBB was from -60 to -50 ℃ in north-central Henan Province in the whole strong precipitation time, and the moving speed was equivalent to that of southwest vortex. The low-value belt of TBB corresponded with the rainstorm occurrence zone in Henan, and the minimum-value center of TBB was basically consistent with the strongest center of precipitation. [Conclusion] The research provided the scientific basis for the short-term forecast of rainstorm.