Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni...Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.展开更多
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra...Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.展开更多
CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and ...CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Metal additive manufacturing(MAM)enables near-net shape production of components with minimized waste and excellent mechanical performance based on multi-scale microstructural heterogeneity.Espe-cially,the dislocation...Metal additive manufacturing(MAM)enables near-net shape production of components with minimized waste and excellent mechanical performance based on multi-scale microstructural heterogeneity.Espe-cially,the dislocation cell network that often bears elemental segregation or precipitation of a secondary phase contributes to enhancing the strength of additively manufactured materials.The cell boundaries can also act as active nucleation sites for the formation of precipitates under post-MAM heat treatment,as the chemical heterogeneity and profuse dislocations generate a driving force for precipitation.In this work,we subjected a Co_(18)Cr_(15)Fe_(50)Ni_(10)Mo_(6.5)C_(0.5)(at%)medium-entropy alloy fabricated by laser powder bed fusion(LPBF)to post-LPBF annealing at 900℃for 10 min.Microstructural investigation revealed that the cell boundaries of the as-built sample,which were decorated by Mo segregation,are replaced byμphase andM_(6)C typecarbide precipitatesduringannealingwhile thegrainstructureand sizeremain unaffected,indicating that the post-LPBF annealing delivered the proper amount of heat input to alter only the cell structure.The yield strength slightly decreased with annealing due to a reduction in the strengthening effect by the cell boundaries despite an increased precipitation strengthening effect.How-ever,the post-LPBF annealing improved the strain hardenability and the ultimate tensile strength was enhanced from∼1.02 to∼1.15 GPa owing to reinforced back stress hardening by the increased disloca-tion pile-up at the precipitates.Our results suggest that the cell structure with chemical heterogeneity can be successfully controlled by careful post-MAM heat treatment to tailor the mechanical performance,while also providing insight into alloy design for additive manufacturing.展开更多
The strength-ductility trade-offwas evaded by deploying a triple-level heterogeneous structure into a CoNiV-based medium-entropy alloy(THS MEA).The innovative hetero-structures comprise chemical short-range ordering(C...The strength-ductility trade-offwas evaded by deploying a triple-level heterogeneous structure into a CoNiV-based medium-entropy alloy(THS MEA).The innovative hetero-structures comprise chemical short-range ordering(CSRO)at the atomic level,B2 precipitates at the nanoscale level,and heterogeneous grains at the microscale level.The THS MEA exhibits superior mechanical properties,displaying a yield strength from 1.1 GPa to 1.5 GPa alongside a uniform elongation of 18%-35%.Compared with its coarse-grained(CG)counterpart,the THS MEA demonstrates the pronounced up-turn phenomenon and enhanced hardening behavior attributed to hetero-deformation-induced(HDI)hardening.The detailed microstructural characterizations reveal that CG MEA primarily accommodates deformation through extensive planar dislocations and Taylor lattices.However,the THS MEA exhibits a more complex deformation profile,characterized by planar and waved dislocations,deformation twins,stacking faults,and Lomer-Cottrell locks.Additionally,the interactions between dislocations and B2 nanoprecipitates play a pivotal role in dislocation entanglements and accumulations.Furthermore,the CSRO within the matrix effectively retards the dislocation motion,contributing to a substantive hardening effect.These findings underscore the potential of a heterogeneous microstructure strategy in enhancing strain hardening for conquering the strength-ductility dilemma.展开更多
This study demonstrated the potential for customizing the desired properties of the Co_(18.5)Cr_(12)Fe_(55)Ni_(9)Mo_(3.5)C_(2)(at.%)ferrous medium-entropy alloy by manipulating the deformation-induced martensite trans...This study demonstrated the potential for customizing the desired properties of the Co_(18.5)Cr_(12)Fe_(55)Ni_(9)Mo_(3.5)C_(2)(at.%)ferrous medium-entropy alloy by manipulating the deformation-induced martensite transformation(DIMT)behavior at liquid nitrogen temperature.This was achieved by modifying various initial microstructures through annealing at temperatures ranging from 900 to 1200℃.The variations in DIMT kinetics were analyzed based on two main factors.(1)Inducing carbide precipitation by annealing at 900 and 1000°C results in changes in the composition within the matrix,which may affect the stability of the face-centered cubic phase.Samples with a higher volume fraction of the carbide precipitates exhibit lower-GFCC→BCC and faster DIMT kinetics.(2)The onset and kinetics of DIMT are also affected by the use of martensite nucleation sites,which may vary depending on the presence of non-recrystallized regions or the grain size.In fine-grained structures,martensite primarily nucleated in the non-recrystallized regions and grain boundaries.However,in coarse-grained microstructures,martensite mainly nucleated along the in-grain shear bands and their intersections.This precise control of the microstructure results in superior properties.The samples annealed at 900 and 1000°C with carbide precipitates and fine grains exhibit ultrahigh ultimate tensile strength,which may reach elevated values up to∼1.8 GPa,while those annealed at 1100 and 1200°C with larger grains and no precipitates exhibit a uniform elongation that exceeds 100%.展开更多
A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nit...A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nitrogen doping.This achievement notably overcomes the inherent constraints of conventional metal-based absorbers,including low resonance frequency,high conductivity,and elevated density,for the synergistic advantages provided by multimetallic alloys and foams.Microstructural analysis with comprehensive theoretical calculations provides in-depth insights into the formation mechanism,electronic structure,and magnetic moment of MEANFs.Furthermore,deliberate component design along with the foam structure proves to be an effective strategy for enhancing impedance matching and absorption.The results show that the MEANFs exhibit a minimum reflection loss(RL_(min))value of-60.32 dB and a maximum effective absorption bandwidth(EAB_(max))of 5.28 GHz at 1.69 mm.This augmentation of energy dissipation in EMW is predominantly attributed to factors such as porous structure,interfacial polarization,defect-induced polarization,and magnetic resonance.This study demonstrates a facile and efficient approach for synthesizing single-phase medium-entropy alloys,emphasizing their potential as materials for electromagnetic wave absorption due to their adjustable magnetic-dielectric properties.展开更多
Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density...Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.展开更多
The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al a...The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications.展开更多
Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable ...Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs.展开更多
The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results sh...The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results show that reducing the grain size down into the nano-meter regime,on the one hand,significantly elevates the hardness of the FeCoNi alloy,and on the other hand,facilitates the formation of a surface oxide layer.As a result,the wear rate of the nanocrystalline(NC)FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart.The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient.Such enhancement in tribological properties mainly stems from the improved strain hardening ability,owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.展开更多
Optimizing the local surface plasmon resonance(LSPR)effect of non-noble metals through alloying has been crucial for improving its practical application in the field of photocatalysis.Rare studies capture the detail t...Optimizing the local surface plasmon resonance(LSPR)effect of non-noble metals through alloying has been crucial for improving its practical application in the field of photocatalysis.Rare studies capture the detail that the change in the electronic structure of metal elements caused by alloying affects plasma carrier concentration and the local surface plasmon resonance effect.Herein,NiCuCoFe medium-entropy alloys(MEAs)nanoclusters were designed and used to modify the Bi_(3)O_(4)Br/CNNs Z-scheme heterojunc-tion.The cocktail effect of MEAs causes the 3d-orbital hybridization of various metal elements,which promotes the release of charge carriers.The higher the carrier concentration,the stronger the LSPR effect of MEAs.In addition,the mechanism of three typical working pathways of the LSPR effect to improve the photocatalytic performance of heterojunction is discussed.And compared with those of Bi_(3)O_(4)Br,CNNs,and Bi_(3)O_(4)Br/CNNs,the rate constant of MEAs-Bi_(3)O_(4)Br/CNNs was 3.26,11.16,and 3.17 times higher during the degradation of norfloxacin,respectively.This study provides a new strategy for understanding the mechanism of LSPR and the rational design of plasmonic coupling architectures for enhanced photocatalysis.展开更多
The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the p...The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.展开更多
The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,e...The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications.展开更多
Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by ...Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.展开更多
Recently,high/medium-entropy alloys(HEAs/MEA s)have been considered attractive catalysts due to their unique physicochemical properties.However,the synthesis of nano-sized HEAs/MEAs catalysts with desirable morphology...Recently,high/medium-entropy alloys(HEAs/MEA s)have been considered attractive catalysts due to their unique physicochemical properties.However,the synthesis of nano-sized HEAs/MEAs catalysts with desirable morphology presents significant challenges.Herein,we report the synthesis of NiCoFeCu MEA nanoparticles encapsulated in nitrogen-doped carbon nanotubes(NCTs)via a straightforward one-step pyrolysis method.The unique structure of NiCoFeCu/NCTs and the nano-sized MEA catalysts contributes to the improved hydrogen desorption kinetics of MgH_(2).The onset dehydrogenation temperature of the MgH_(2)-NiCoFeCu/NCTs composite decreased to 173.4℃,a reduction of 117.4℃compared to pure MgH_(2).The MgH_(2)-NiCoFeCu/NCTs composite could release 6.50 wt%H_(2)within 30 min at 325℃.Furthermore,an activation energy of 116.3 kJ·mol^(-1)for the MgH_(2)-NiCoFeCu/NCTs composite has been obtained,much lower than pure milled MgH_(2),demonstrating an enhanced hydrogen desorption kinetics.Moreover,the exceptional dispersion capability of the carbon material contributes to outstanding cyclic stability without any loss of capacity even after 10 cycles of de/hydrogenation at300℃.展开更多
A novel high nitrogen medium-entropy alloy CrCoNiN, which had higher strength and slightly lower ductility than CrCoNi alloy, was successfully manufactured by pressurized metallurgy.The microstructure and corrosion be...A novel high nitrogen medium-entropy alloy CrCoNiN, which had higher strength and slightly lower ductility than CrCoNi alloy, was successfully manufactured by pressurized metallurgy.The microstructure and corrosion behaviour were investigated by microscopic, electrochemical and spectroscopic methods. The results indicated that nitrogen existed in the form of Cr2N precipitates and uniformly distributed N atoms, and nitrogen alloying significantly refined the grain size. Besides, nitrogen enriched on the outmost surface of passive film and metal/film interface as ammonia (NH3 and NH4^+) and CrN, respectively. The significant improvement of corrosion resistance of CrCoNiN was attributed to the lower metastahle pitting susceptibility together with thicker, less defective and more compact passive film.展开更多
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i...Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.展开更多
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c...In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.展开更多
基金financial support from the Na-tional Natural Science Foundation of China(No.52231006)National Key Research and Development Program of China(No.2017YFB0702003)the National Natural Science Foundation of China(No.51871217).
文摘Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.
基金supported by the Tianjin Science and Technology Plan Project(No.22JCQNJC01280)the Central Funds Guiding the Local Science and Technology Development of Hebei Province(Nos.226Z1001G and 226Z1012G)+1 种基金the National Natural Science Foundation of China(No.52002109,52071124)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.
基金supported by the Natural Science Foundation of China(Nos.52175188 and 52274367)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-434)+2 种基金he Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology(No.LKLAMTF202301)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012378)the Science and Technology on Reactor System Design Technology Laboratory.
文摘CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Research Founda-tion of Korea(NRF)grant funded by the Korean government(MSIT)(Nos.2021R1A2C3006662 and RS-2023-00281246)supported by the Principal R&D project(contract no.PNK9950)of the Korean Institute of Materials Science(KIMS).
文摘Metal additive manufacturing(MAM)enables near-net shape production of components with minimized waste and excellent mechanical performance based on multi-scale microstructural heterogeneity.Espe-cially,the dislocation cell network that often bears elemental segregation or precipitation of a secondary phase contributes to enhancing the strength of additively manufactured materials.The cell boundaries can also act as active nucleation sites for the formation of precipitates under post-MAM heat treatment,as the chemical heterogeneity and profuse dislocations generate a driving force for precipitation.In this work,we subjected a Co_(18)Cr_(15)Fe_(50)Ni_(10)Mo_(6.5)C_(0.5)(at%)medium-entropy alloy fabricated by laser powder bed fusion(LPBF)to post-LPBF annealing at 900℃for 10 min.Microstructural investigation revealed that the cell boundaries of the as-built sample,which were decorated by Mo segregation,are replaced byμphase andM_(6)C typecarbide precipitatesduringannealingwhile thegrainstructureand sizeremain unaffected,indicating that the post-LPBF annealing delivered the proper amount of heat input to alter only the cell structure.The yield strength slightly decreased with annealing due to a reduction in the strengthening effect by the cell boundaries despite an increased precipitation strengthening effect.How-ever,the post-LPBF annealing improved the strain hardenability and the ultimate tensile strength was enhanced from∼1.02 to∼1.15 GPa owing to reinforced back stress hardening by the increased disloca-tion pile-up at the precipitates.Our results suggest that the cell structure with chemical heterogeneity can be successfully controlled by careful post-MAM heat treatment to tailor the mechanical performance,while also providing insight into alloy design for additive manufacturing.
基金financially supported by the NSFC Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Key R&D Program of China(No.2019YFA0209902)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0510301)the National Natural Science Foundation of China(Nos.52192591 and 52071326)the Hong Kong Research Grants Council(No.GRF 11214121)。
文摘The strength-ductility trade-offwas evaded by deploying a triple-level heterogeneous structure into a CoNiV-based medium-entropy alloy(THS MEA).The innovative hetero-structures comprise chemical short-range ordering(CSRO)at the atomic level,B2 precipitates at the nanoscale level,and heterogeneous grains at the microscale level.The THS MEA exhibits superior mechanical properties,displaying a yield strength from 1.1 GPa to 1.5 GPa alongside a uniform elongation of 18%-35%.Compared with its coarse-grained(CG)counterpart,the THS MEA demonstrates the pronounced up-turn phenomenon and enhanced hardening behavior attributed to hetero-deformation-induced(HDI)hardening.The detailed microstructural characterizations reveal that CG MEA primarily accommodates deformation through extensive planar dislocations and Taylor lattices.However,the THS MEA exhibits a more complex deformation profile,characterized by planar and waved dislocations,deformation twins,stacking faults,and Lomer-Cottrell locks.Additionally,the interactions between dislocations and B2 nanoprecipitates play a pivotal role in dislocation entanglements and accumulations.Furthermore,the CSRO within the matrix effectively retards the dislocation motion,contributing to a substantive hardening effect.These findings underscore the potential of a heterogeneous microstructure strategy in enhancing strain hardening for conquering the strength-ductility dilemma.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(No.RS-2023-00281246).
文摘This study demonstrated the potential for customizing the desired properties of the Co_(18.5)Cr_(12)Fe_(55)Ni_(9)Mo_(3.5)C_(2)(at.%)ferrous medium-entropy alloy by manipulating the deformation-induced martensite transformation(DIMT)behavior at liquid nitrogen temperature.This was achieved by modifying various initial microstructures through annealing at temperatures ranging from 900 to 1200℃.The variations in DIMT kinetics were analyzed based on two main factors.(1)Inducing carbide precipitation by annealing at 900 and 1000°C results in changes in the composition within the matrix,which may affect the stability of the face-centered cubic phase.Samples with a higher volume fraction of the carbide precipitates exhibit lower-GFCC→BCC and faster DIMT kinetics.(2)The onset and kinetics of DIMT are also affected by the use of martensite nucleation sites,which may vary depending on the presence of non-recrystallized regions or the grain size.In fine-grained structures,martensite primarily nucleated in the non-recrystallized regions and grain boundaries.However,in coarse-grained microstructures,martensite mainly nucleated along the in-grain shear bands and their intersections.This precise control of the microstructure results in superior properties.The samples annealed at 900 and 1000°C with carbide precipitates and fine grains exhibit ultrahigh ultimate tensile strength,which may reach elevated values up to∼1.8 GPa,while those annealed at 1100 and 1200°C with larger grains and no precipitates exhibit a uniform elongation that exceeds 100%.
基金supported by the National Natural Science Foundation of China(Grant No.52071294)the National Key Research and Development Program(Grant No.2022YFE0109800)the Natural Science Foundation of Zhejiang Province(Grant No.LY20E020015).
文摘A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nitrogen doping.This achievement notably overcomes the inherent constraints of conventional metal-based absorbers,including low resonance frequency,high conductivity,and elevated density,for the synergistic advantages provided by multimetallic alloys and foams.Microstructural analysis with comprehensive theoretical calculations provides in-depth insights into the formation mechanism,electronic structure,and magnetic moment of MEANFs.Furthermore,deliberate component design along with the foam structure proves to be an effective strategy for enhancing impedance matching and absorption.The results show that the MEANFs exhibit a minimum reflection loss(RL_(min))value of-60.32 dB and a maximum effective absorption bandwidth(EAB_(max))of 5.28 GHz at 1.69 mm.This augmentation of energy dissipation in EMW is predominantly attributed to factors such as porous structure,interfacial polarization,defect-induced polarization,and magnetic resonance.This study demonstrates a facile and efficient approach for synthesizing single-phase medium-entropy alloys,emphasizing their potential as materials for electromagnetic wave absorption due to their adjustable magnetic-dielectric properties.
基金financially supported by the National Natural Science Foundation of China(Nos.52073214 and 22075211)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)+5 种基金Natural Science Foundation of Shandong Province(Nos.ZR2023MB049 and ZR2021QB129)China Postdoctoral Science Foundation(No.2020M670483)Science Foundation of Weifang University(No.2023BS11)supported by the open research fund of the Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry at Kashi Universitysupported by the Tianhe Qingsuo Open Research Fund of TSYS in 2022 and NSCC-TJNankai University Large-scale Instrument Experimental Technology R&D Project(No.21NKSYJS09)。
文摘Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.
基金funded by the Youth Fund Project of GRINM(No.66922309)the National Natural Science Foundation of China(No.52301220)。
文摘The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications.
基金supported by the Korea Institute for Advance-ment of Technology(KIAT)grant funded by the Korea Government(MOTIE)(HRD Program for Industrial Innovation)(No.P0023676)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2022R1A5A1030054 and RS-2023-00281508).
文摘Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs.
基金supported by the Science and Technology Development Program of Jilin Province,China(No.20160520007JH)the Major Science and Technology Special Project in Jilin Province,China(No.20210301024GX)the National Natural Science Foundation of China(Nos.51601067,51775266,52301169).
文摘The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results show that reducing the grain size down into the nano-meter regime,on the one hand,significantly elevates the hardness of the FeCoNi alloy,and on the other hand,facilitates the formation of a surface oxide layer.As a result,the wear rate of the nanocrystalline(NC)FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart.The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient.Such enhancement in tribological properties mainly stems from the improved strain hardening ability,owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.
基金supported by the National Natural Science Foundation of China(No.22172092)the PhD Start-up Foundation for Science and Technology(No.420071 and 420093)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021MB048 and ZR2021MB079)the Development and Application of Cutting-edge Technologies for Comprehensive Utilization of Hydrogen Energy(No.219213).
文摘Optimizing the local surface plasmon resonance(LSPR)effect of non-noble metals through alloying has been crucial for improving its practical application in the field of photocatalysis.Rare studies capture the detail that the change in the electronic structure of metal elements caused by alloying affects plasma carrier concentration and the local surface plasmon resonance effect.Herein,NiCuCoFe medium-entropy alloys(MEAs)nanoclusters were designed and used to modify the Bi_(3)O_(4)Br/CNNs Z-scheme heterojunc-tion.The cocktail effect of MEAs causes the 3d-orbital hybridization of various metal elements,which promotes the release of charge carriers.The higher the carrier concentration,the stronger the LSPR effect of MEAs.In addition,the mechanism of three typical working pathways of the LSPR effect to improve the photocatalytic performance of heterojunction is discussed.And compared with those of Bi_(3)O_(4)Br,CNNs,and Bi_(3)O_(4)Br/CNNs,the rate constant of MEAs-Bi_(3)O_(4)Br/CNNs was 3.26,11.16,and 3.17 times higher during the degradation of norfloxacin,respectively.This study provides a new strategy for understanding the mechanism of LSPR and the rational design of plasmonic coupling architectures for enhanced photocatalysis.
基金the funding support for the work by the National Natural Science Foundation of China(NSFC)under Grant No.52071316the Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300755)+1 种基金the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0697)the Project of Science Foundation in Chongqing Jiaotong University(Grant No.F1210023).
文摘The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.
基金This work is supported by the National Natural Science Foundation of China(Nos.51971180,52271037,and 51971179)the Guangdong Provincial Science and Technology Program,China(No.2019B090905009)+2 种基金the Shaanxi Provincial Science and Technology Program,China(No.2023-JC-ZD-23)the Foreign Senior Talents Program of Guangdong Province,China,and the Fundamental Research Funds for the Central Universities of China(No.D5000230131)the Shenzhen Fundamental Research Program(Grant No.JCYJ20210324122203010).The authors would like to express their sincere gratitude to Dr.W.Loeser and Dr.V.Y.Zadorozhnyy for invaluable discussion.
文摘The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications.
基金supported by the National Natural Science Foundation of China(Nos.52061027 and 52130108)Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)+1 种基金the Science and Technology Program Project of Gansu Province(Nos.22YF7GA155 and 22ZD6GA008)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)。
文摘Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB4000604)the National Natural Science Foundation of China(No.52271220)+2 种基金111 Project(No.B12015)the Fundamental Research Funds for the Central UniversitiesGuangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials,Science Research,Technology Development Project of Guilin(No.20210102-4)。
文摘Recently,high/medium-entropy alloys(HEAs/MEA s)have been considered attractive catalysts due to their unique physicochemical properties.However,the synthesis of nano-sized HEAs/MEAs catalysts with desirable morphology presents significant challenges.Herein,we report the synthesis of NiCoFeCu MEA nanoparticles encapsulated in nitrogen-doped carbon nanotubes(NCTs)via a straightforward one-step pyrolysis method.The unique structure of NiCoFeCu/NCTs and the nano-sized MEA catalysts contributes to the improved hydrogen desorption kinetics of MgH_(2).The onset dehydrogenation temperature of the MgH_(2)-NiCoFeCu/NCTs composite decreased to 173.4℃,a reduction of 117.4℃compared to pure MgH_(2).The MgH_(2)-NiCoFeCu/NCTs composite could release 6.50 wt%H_(2)within 30 min at 325℃.Furthermore,an activation energy of 116.3 kJ·mol^(-1)for the MgH_(2)-NiCoFeCu/NCTs composite has been obtained,much lower than pure milled MgH_(2),demonstrating an enhanced hydrogen desorption kinetics.Moreover,the exceptional dispersion capability of the carbon material contributes to outstanding cyclic stability without any loss of capacity even after 10 cycles of de/hydrogenation at300℃.
基金supported by the National Natural Science Foundation of China(Grant Nos.51434004,U1435205,51774074)the Transformation Project of Major Scientific and Technological Achievements in Shenyang(Grant No.Z17-5-003)
文摘A novel high nitrogen medium-entropy alloy CrCoNiN, which had higher strength and slightly lower ductility than CrCoNi alloy, was successfully manufactured by pressurized metallurgy.The microstructure and corrosion behaviour were investigated by microscopic, electrochemical and spectroscopic methods. The results indicated that nitrogen existed in the form of Cr2N precipitates and uniformly distributed N atoms, and nitrogen alloying significantly refined the grain size. Besides, nitrogen enriched on the outmost surface of passive film and metal/film interface as ammonia (NH3 and NH4^+) and CrN, respectively. The significant improvement of corrosion resistance of CrCoNiN was attributed to the lower metastahle pitting susceptibility together with thicker, less defective and more compact passive film.
基金supported by the National Natural Science Foundation of China(Grant Nos.51722104,51790482,51621063 and 51625103)the 111 Project 2.0 of China(PB2018008)+1 种基金the National Key Research and Development Program of China(2017YFA0700701)the Fundamental Research Funds for the Central Universities for part of financial support(xtr022019004)。
文摘Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.
基金supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,and 51761135031)the National Key Research and Devel-opment Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004).
文摘In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.