期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Microstructures,mechanical properties,and strengthening mechanisms of the(NbMoTa)_(100−x)C_(x) refractory medium-entropy alloys 被引量:1
1
作者 Xueqian Gou Ruqing Cao +2 位作者 Weihua Zhou Zheling Shen Yi Li 《Journal of Materials Science & Technology》 2025年第11期105-119,共15页
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni... Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs. 展开更多
关键词 Refractory medium-entropy alloys Carbon MICROSTRUCTURES Mechanical properties Strengthening mechanisms
原文传递
Dual heterogeneous structure enabled ultrahigh strength and ductility across a broad temperature range in CrCoNi-based medium-entropy alloy 被引量:1
2
作者 Kang Tu Bo Li +2 位作者 Zonglin Li Kaisheng Ming Shijian Zheng 《Journal of Materials Science & Technology》 2025年第4期46-59,共14页
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra... Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range. 展开更多
关键词 medium-entropy alloy Dual heterogeneous structure Strength-ductility synergy Cryogenic temperatures Elevated temperatures
原文传递
A novel CoCrNi-based medium-entropy alloy self-lubricating composite with superior wear performance 被引量:1
3
作者 Ming-Da Xie Wen-Ting Ye +4 位作者 Qing Zhou Lei Jia Biao Chen Meng-Qian Zhang Hai-Feng Wang 《Rare Metals》 2025年第3期2011-2026,共16页
CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and ... CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication. 展开更多
关键词 SELF-LUBRICATING medium-entropy alloy matrix composite CoCrNi In situ carbide
原文传递
Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries 被引量:1
4
作者 Fei-Fei Hong Xin Zhou +9 位作者 Hao Liu Gui-Lin Feng Xiao-Hong Liu Heng Zhang Wei-Feng Fan Bin Zhang Mei-Hua Zuo Wang-Yan Xing Ping Zhang Wei Xiang 《Rare Metals》 2025年第5期2997-3007,共11页
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d... Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials. 展开更多
关键词 Layered oxide cathode Sodium ion batteries Phase transition medium-entropy P2/O3 biphasic structure
原文传递
Restructuring the cell network of non-equiatomic CoCrFeNiMoC medium-entropy alloy fabricated by laser powder bed fusion
5
作者 Hyeonseok Kwon Eun Seong Kim +7 位作者 Yoon-Uk Heo Jungho Choe Rae Eon Kim Soung Yeoul Ahn Sang-Ho Oh Jeong Min Park Byeong-Joo Lee Hyoung Seop Kim 《Journal of Materials Science & Technology》 2025年第11期143-152,共10页
Metal additive manufacturing(MAM)enables near-net shape production of components with minimized waste and excellent mechanical performance based on multi-scale microstructural heterogeneity.Espe-cially,the dislocation... Metal additive manufacturing(MAM)enables near-net shape production of components with minimized waste and excellent mechanical performance based on multi-scale microstructural heterogeneity.Espe-cially,the dislocation cell network that often bears elemental segregation or precipitation of a secondary phase contributes to enhancing the strength of additively manufactured materials.The cell boundaries can also act as active nucleation sites for the formation of precipitates under post-MAM heat treatment,as the chemical heterogeneity and profuse dislocations generate a driving force for precipitation.In this work,we subjected a Co_(18)Cr_(15)Fe_(50)Ni_(10)Mo_(6.5)C_(0.5)(at%)medium-entropy alloy fabricated by laser powder bed fusion(LPBF)to post-LPBF annealing at 900℃for 10 min.Microstructural investigation revealed that the cell boundaries of the as-built sample,which were decorated by Mo segregation,are replaced byμphase andM_(6)C typecarbide precipitatesduringannealingwhile thegrainstructureand sizeremain unaffected,indicating that the post-LPBF annealing delivered the proper amount of heat input to alter only the cell structure.The yield strength slightly decreased with annealing due to a reduction in the strengthening effect by the cell boundaries despite an increased precipitation strengthening effect.How-ever,the post-LPBF annealing improved the strain hardenability and the ultimate tensile strength was enhanced from∼1.02 to∼1.15 GPa owing to reinforced back stress hardening by the increased disloca-tion pile-up at the precipitates.Our results suggest that the cell structure with chemical heterogeneity can be successfully controlled by careful post-MAM heat treatment to tailor the mechanical performance,while also providing insight into alloy design for additive manufacturing. 展开更多
关键词 Laser powder bed fusion medium-entropy alloy Cell structure Strain hardening Precipitation Back stress hardening
原文传递
Superior tensile properties induced by triple-level heterogeneous structures in the CoNiV-based medium-entropy alloy
6
作者 Luke Xu Yan Ma +5 位作者 Zihan Zhang Muxin Yang Ping Jiang Yuntian Zhu Xiaolei Wu Fuping Yuan 《Journal of Materials Science & Technology》 2025年第11期245-254,共10页
The strength-ductility trade-offwas evaded by deploying a triple-level heterogeneous structure into a CoNiV-based medium-entropy alloy(THS MEA).The innovative hetero-structures comprise chemical short-range ordering(C... The strength-ductility trade-offwas evaded by deploying a triple-level heterogeneous structure into a CoNiV-based medium-entropy alloy(THS MEA).The innovative hetero-structures comprise chemical short-range ordering(CSRO)at the atomic level,B2 precipitates at the nanoscale level,and heterogeneous grains at the microscale level.The THS MEA exhibits superior mechanical properties,displaying a yield strength from 1.1 GPa to 1.5 GPa alongside a uniform elongation of 18%-35%.Compared with its coarse-grained(CG)counterpart,the THS MEA demonstrates the pronounced up-turn phenomenon and enhanced hardening behavior attributed to hetero-deformation-induced(HDI)hardening.The detailed microstructural characterizations reveal that CG MEA primarily accommodates deformation through extensive planar dislocations and Taylor lattices.However,the THS MEA exhibits a more complex deformation profile,characterized by planar and waved dislocations,deformation twins,stacking faults,and Lomer-Cottrell locks.Additionally,the interactions between dislocations and B2 nanoprecipitates play a pivotal role in dislocation entanglements and accumulations.Furthermore,the CSRO within the matrix effectively retards the dislocation motion,contributing to a substantive hardening effect.These findings underscore the potential of a heterogeneous microstructure strategy in enhancing strain hardening for conquering the strength-ductility dilemma. 展开更多
关键词 medium-entropy alloy Hetero-structures Precipitation hardening Hetero-deformation-induced hardening Chemical short-range ordering
原文传递
Regulation of cryogenic mechanical behaviors of C-added non-equiatomic CoCrFeNiMo ferrous medium-entropy alloy via control of initial microstructure
7
作者 Ji Yeong Lee Hyeonseok Kwon +7 位作者 Jae Heung Lee Jihye Kwon Jaemin Wang Jae Wung Bae Jongun Moon Byeong-Joo Lee Yoon-Uk Heo Hyoung Seop Kim 《Journal of Materials Science & Technology》 2025年第5期141-151,共11页
This study demonstrated the potential for customizing the desired properties of the Co_(18.5)Cr_(12)Fe_(55)Ni_(9)Mo_(3.5)C_(2)(at.%)ferrous medium-entropy alloy by manipulating the deformation-induced martensite trans... This study demonstrated the potential for customizing the desired properties of the Co_(18.5)Cr_(12)Fe_(55)Ni_(9)Mo_(3.5)C_(2)(at.%)ferrous medium-entropy alloy by manipulating the deformation-induced martensite transformation(DIMT)behavior at liquid nitrogen temperature.This was achieved by modifying various initial microstructures through annealing at temperatures ranging from 900 to 1200℃.The variations in DIMT kinetics were analyzed based on two main factors.(1)Inducing carbide precipitation by annealing at 900 and 1000°C results in changes in the composition within the matrix,which may affect the stability of the face-centered cubic phase.Samples with a higher volume fraction of the carbide precipitates exhibit lower-GFCC→BCC and faster DIMT kinetics.(2)The onset and kinetics of DIMT are also affected by the use of martensite nucleation sites,which may vary depending on the presence of non-recrystallized regions or the grain size.In fine-grained structures,martensite primarily nucleated in the non-recrystallized regions and grain boundaries.However,in coarse-grained microstructures,martensite mainly nucleated along the in-grain shear bands and their intersections.This precise control of the microstructure results in superior properties.The samples annealed at 900 and 1000°C with carbide precipitates and fine grains exhibit ultrahigh ultimate tensile strength,which may reach elevated values up to∼1.8 GPa,while those annealed at 1100 and 1200°C with larger grains and no precipitates exhibit a uniform elongation that exceeds 100%. 展开更多
关键词 Ferrous medium-entropy alloy Deformation-induced martensitic transformation MICROSTRUCTURES Phase stability Precipitation
原文传递
Magnetic-dielectric synergistic enhancement effect of anti-perovskite medium-entropy alloy nitride foams designed by lattice expansion engineering
8
作者 Wangchang Li Zengbao Ma +13 位作者 Wanjia Li Lun Fan Yue Kang Ting Zou Xiao Han Yao Ying Wenbo Xiang Zhiwei Li Jing Yu Jingwu Zheng Liang Qiao Juan Li Min Wu Shenglei Che 《Journal of Materials Science & Technology》 2025年第2期42-52,共11页
A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nit... A single-phase anti-perovskite medium-entropy alloy nitride foams(MEANFs),as innovative materials for electromagnetic wave(EMW)absorption,have been successfully synthesized through the lattice expansion induced by nitrogen doping.This achievement notably overcomes the inherent constraints of conventional metal-based absorbers,including low resonance frequency,high conductivity,and elevated density,for the synergistic advantages provided by multimetallic alloys and foams.Microstructural analysis with comprehensive theoretical calculations provides in-depth insights into the formation mechanism,electronic structure,and magnetic moment of MEANFs.Furthermore,deliberate component design along with the foam structure proves to be an effective strategy for enhancing impedance matching and absorption.The results show that the MEANFs exhibit a minimum reflection loss(RL_(min))value of-60.32 dB and a maximum effective absorption bandwidth(EAB_(max))of 5.28 GHz at 1.69 mm.This augmentation of energy dissipation in EMW is predominantly attributed to factors such as porous structure,interfacial polarization,defect-induced polarization,and magnetic resonance.This study demonstrates a facile and efficient approach for synthesizing single-phase medium-entropy alloys,emphasizing their potential as materials for electromagnetic wave absorption due to their adjustable magnetic-dielectric properties. 展开更多
关键词 medium-entropy alloy nitride foams Anti-perovskite structure Lattice expansion Engineering Magnetic-dielectric synergistic Electromagnetic wave absorption
原文传递
Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance
9
作者 Kaili Wang Pengcheng Liu +7 位作者 Mingzhe Wang Tianran Wei Jitao Lu Xingling Zhao Zaiyong Jiang Zhimin Yuan Xijun Liu Jia He 《Chinese Chemical Letters》 2025年第4期221-228,共8页
Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density... Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs. 展开更多
关键词 medium-entropy alloys aerogels d-d Orbitals coupling pH-general Methanol oxidation reaction Ultra-thin catalyst layer
原文传递
Developing novel ultra-thin refractory medium-entropy foils with excellent strength-ductility synergy
10
作者 Sheng-Li Guo Wei Zhang +6 位作者 Xue-Hui Yan Guang-Zong Wang Ke-Hang He Bao-Hong Zhu Hao-Chen Qiu Shuai-Shuai Wu Wei Jiang 《Rare Metals》 2025年第2期1380-1391,共12页
The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al a... The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications. 展开更多
关键词 medium-entropy alloys Ultra-thin foils Mechanical properties NANOPRECIPITATION
原文传递
Unveiling the roles of initial phase constituents and phase metastability in hydrogen embrittlement of TRIP-assisted VCrCoFeNi medium-entropy alloys
11
作者 Sang Yoon Song Dae Cheol Yang +5 位作者 Han-Jin Kim Sang-In Lee Hyeon-Seok Do Byeong-Joo Lee Alireza Zargaran Seok Su Sohn 《Journal of Materials Science & Technology》 2025年第4期160-176,共17页
Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable ... Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs. 展开更多
关键词 medium-entropy alloys(MEAs) Transformation-induced plasticity(TRIP) Hydrogen embrittlement Hydrogen-induced crack Hydrogen diffusion and trapping
原文传递
Effects of nanostructuring on mechanical and tribological behaviors of FeCoNi medium-entropy alloy 被引量:1
12
作者 Yan CHEN Heng LI +10 位作者 Si-en LI Gui-xun SUN Liang ZHAO Chao-quan HU Wei ZHANG Guo-dong TONG Xue-gang CHEN Shuang HAN Hong-xiang ZONG Jun LI Jian-she LIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第12期3963-3977,共15页
The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results sh... The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results show that reducing the grain size down into the nano-meter regime,on the one hand,significantly elevates the hardness of the FeCoNi alloy,and on the other hand,facilitates the formation of a surface oxide layer.As a result,the wear rate of the nanocrystalline(NC)FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart.The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient.Such enhancement in tribological properties mainly stems from the improved strain hardening ability,owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion. 展开更多
关键词 medium-entropy alloy FeCoNi alloy nanocrystalline mechanical behavior dry-sliding wear concentration undulation
在线阅读 下载PDF
Construction of medium-entropy alloys coupled Z-Scheme heterojunction and its enhanced photocatalytic performance by regulating mechanism of LSPR effect 被引量:1
13
作者 Jianfei Li Nuotong Zhang +9 位作者 Degang Li Yueyun Li Weimin Zhang Zengdian Zhao Shasha Song Yan Liu Luchang Qin Xingliang Bao Bin Zhang Wenxin Dai 《Journal of Materials Science & Technology》 CSCD 2024年第30期32-45,共14页
Optimizing the local surface plasmon resonance(LSPR)effect of non-noble metals through alloying has been crucial for improving its practical application in the field of photocatalysis.Rare studies capture the detail t... Optimizing the local surface plasmon resonance(LSPR)effect of non-noble metals through alloying has been crucial for improving its practical application in the field of photocatalysis.Rare studies capture the detail that the change in the electronic structure of metal elements caused by alloying affects plasma carrier concentration and the local surface plasmon resonance effect.Herein,NiCuCoFe medium-entropy alloys(MEAs)nanoclusters were designed and used to modify the Bi_(3)O_(4)Br/CNNs Z-scheme heterojunc-tion.The cocktail effect of MEAs causes the 3d-orbital hybridization of various metal elements,which promotes the release of charge carriers.The higher the carrier concentration,the stronger the LSPR effect of MEAs.In addition,the mechanism of three typical working pathways of the LSPR effect to improve the photocatalytic performance of heterojunction is discussed.And compared with those of Bi_(3)O_(4)Br,CNNs,and Bi_(3)O_(4)Br/CNNs,the rate constant of MEAs-Bi_(3)O_(4)Br/CNNs was 3.26,11.16,and 3.17 times higher during the degradation of norfloxacin,respectively.This study provides a new strategy for understanding the mechanism of LSPR and the rational design of plasmonic coupling architectures for enhanced photocatalysis. 展开更多
关键词 NiCuCoFe medium-entropy alloys LSPR Orbital hybridization Z-scheme heterojunction Photocatalysis
原文传递
Composition design study of strong and ductile Mo-alloyed CoCrNi medium-entropy alloys
14
作者 J.X.Yan J.Y.Qin +8 位作者 J.H.Liu H.Chen Y.H.Huang M.Liu C.H.Xia F.Wang X.D.Cui J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期37-47,共11页
The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the p... The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys. 展开更多
关键词 medium-entropy alloys First-principles calculations Stacking-fault energy Solute strengthening Deformation twinning Mechanical properties
原文传递
Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L1_(2)Nanoprecipitates and Grain Boundary Precipitates
15
作者 Leilei Li Kaikai Song +5 位作者 Qingwei Gao Changshan Zhou Xiaoming Liu Yaocen Wang Xiaojun Bai Chongde Cao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期78-88,共11页
The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,e... The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications. 展开更多
关键词 medium-entropy alloy Selective laser melting Precipitation STRENGTH DUCTILITY
原文传递
Achieving strength-ductility synergy in novel paramagnetic Fe-based medium-entropy alloys through deep cryogenic deformation
16
作者 Hu-Wen Ma Yan-Chun Zhao +6 位作者 Li Feng Tian-Zeng Liu Zhi-Qi Yu Bo Jin Wang-Chun Duan Peter K.Liaw Dong Ma 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4493-4507,共15页
Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by ... Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA. 展开更多
关键词 Deep cryogenic transformation Iron-based medium-entropy alloys Dislocation evolution Phase transformation Stacking fault energy
原文传递
NiCoFeCu medium-entropy alloy nanoparticles encapsulated in carbon nanotubes as catalysts for enhancing the hydrogen desorption of MgH_(2)
17
作者 Ya-Fei Liu Yi-Ke Huang +3 位作者 Yu-Sang Guo Meng-Yuan Yue Hua-Xu Shao Yi-Jing Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第11期5868-5879,共12页
Recently,high/medium-entropy alloys(HEAs/MEA s)have been considered attractive catalysts due to their unique physicochemical properties.However,the synthesis of nano-sized HEAs/MEAs catalysts with desirable morphology... Recently,high/medium-entropy alloys(HEAs/MEA s)have been considered attractive catalysts due to their unique physicochemical properties.However,the synthesis of nano-sized HEAs/MEAs catalysts with desirable morphology presents significant challenges.Herein,we report the synthesis of NiCoFeCu MEA nanoparticles encapsulated in nitrogen-doped carbon nanotubes(NCTs)via a straightforward one-step pyrolysis method.The unique structure of NiCoFeCu/NCTs and the nano-sized MEA catalysts contributes to the improved hydrogen desorption kinetics of MgH_(2).The onset dehydrogenation temperature of the MgH_(2)-NiCoFeCu/NCTs composite decreased to 173.4℃,a reduction of 117.4℃compared to pure MgH_(2).The MgH_(2)-NiCoFeCu/NCTs composite could release 6.50 wt%H_(2)within 30 min at 325℃.Furthermore,an activation energy of 116.3 kJ·mol^(-1)for the MgH_(2)-NiCoFeCu/NCTs composite has been obtained,much lower than pure milled MgH_(2),demonstrating an enhanced hydrogen desorption kinetics.Moreover,the exceptional dispersion capability of the carbon material contributes to outstanding cyclic stability without any loss of capacity even after 10 cycles of de/hydrogenation at300℃. 展开更多
关键词 Hydrogen storage Magnesium hydride medium-entropy alloy Catalytic effect
原文传递
Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy 被引量:11
18
作者 Hao Feng Huabing Li +8 位作者 Xiaolei Wu Zhouhua Jiang Si Zhao Tao Zhang Dake Xu Shucai Zhang Hongchun Zhu Binbin Zhang Muxin Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1781-1790,共10页
A novel high nitrogen medium-entropy alloy CrCoNiN, which had higher strength and slightly lower ductility than CrCoNi alloy, was successfully manufactured by pressurized metallurgy.The microstructure and corrosion be... A novel high nitrogen medium-entropy alloy CrCoNiN, which had higher strength and slightly lower ductility than CrCoNi alloy, was successfully manufactured by pressurized metallurgy.The microstructure and corrosion behaviour were investigated by microscopic, electrochemical and spectroscopic methods. The results indicated that nitrogen existed in the form of Cr2N precipitates and uniformly distributed N atoms, and nitrogen alloying significantly refined the grain size. Besides, nitrogen enriched on the outmost surface of passive film and metal/film interface as ammonia (NH3 and NH4^+) and CrN, respectively. The significant improvement of corrosion resistance of CrCoNiN was attributed to the lower metastahle pitting susceptibility together with thicker, less defective and more compact passive film. 展开更多
关键词 medium-entropy alloy NITROGEN Pitting corrosion Passive film Metastable pitting
原文传递
Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping 被引量:9
19
作者 D.D.Zhang H.Wang +3 位作者 J.Y.Zhang H.Xue G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期184-195,共12页
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i... Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively. 展开更多
关键词 medium-entropy alloys Mechanical properties Solid solution hardening Twinning behavior Strength-ductility synergy
原文传递
A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability 被引量:9
20
作者 D.D.Zhang J.Kuang +3 位作者 H.Xue J.Y.Zhang G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期201-212,共12页
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c... In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications. 展开更多
关键词 medium-entropy alloy Mechanical properties Precipitation hardening Deformation mechanisms Coarsening kinetics
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部