A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair aft...A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair after a transient period.The transient pe-riod is shorter than that of DQDB.DQCA MAN has the flexibility in bandwidth allocation:the users can achieve different throughputs if the parameters,Pmax(i),are set to be differ-ent.The implementation of priority mechanism is simpler than that of DQDB.展开更多
A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and da...A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.展开更多
This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided in...This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.展开更多
This letter presents the design and performance of a multi-channel MAC protocol that supports multiple traffics for IEEE 802.11 mobile ad-hoc networks. The dynamic channel selection scheme by receiver decision is impl...This letter presents the design and performance of a multi-channel MAC protocol that supports multiple traffics for IEEE 802.11 mobile ad-hoc networks. The dynamic channel selection scheme by receiver decision is implemented and the number of the data channel is independent of the network topology. The priority for real-time traffic is assured by the proposed adaptive back off algorithm and different IFS. The protocol is evaluated by simulation and the results have shown that it can support multiple traffics and the performance is better than the performance that IEEE 802.11 standard provides.展开更多
Energy efficiency is critical in Wireless Sensor Networks(WSNs)due to the limited power supply.While clustering algorithms are commonly used to extend network lifetime,most of them focus on single-layer optimization.T...Energy efficiency is critical in Wireless Sensor Networks(WSNs)due to the limited power supply.While clustering algorithms are commonly used to extend network lifetime,most of them focus on single-layer optimization.To this end,an Energy-efficient Cross-layer Clustering approach based on the Gini(ECCG)index theory was proposed in this paper.Specifically,a novel mechanism of Gini Index theory-based energy-efficient Cluster Head Election(GICHE)is presented based on the Gini Index and the expected energy distribution to achieve balanced energy consumption among different clusters.In addition,to improve inter-cluster energy efficiency,a Queue synchronous Media Access Control(QMAC)protocol is proposed to reduce intra-cluster communication overhead.Finally,extensive simulations have been conducted to evaluate the effectiveness of ECCG.Simulation results show that ECCG achieves 50.6%longer the time until the First Node Dies(FND)rounds,up to 30%lower energy consumption compared with Low-Energy Adaptive Clustering Hierarchy(LEACH),and higher throughput under different traffic loads,thereby validating its effectiveness in improving energy efficiency and prolonging the network lifetime.展开更多
The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have s...The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting their transmission characteristics. In this paper, some of the decentralized adaptive medium access control (MAC) protocols for CR networks have been critically analyzed, and a novel adaptive MAC protocol for CR networks, decentralized non-global MAC (DNG-MAC), has been proposed. The results show the DNG-MAC outperforms other CR-MAC protocols in terms of time and energy efficiency.展开更多
This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code ch...This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code channel is divided into common channel, broadcast channel and several data channels. Simulation results show that the proposed protocol can achieve significantly better performance than the IEEE 802.11 standard.展开更多
One of the challenging tasks in cognitive radio(CR) networks is to agree on a common control channel to exchange control information. This paper presents a novel medium access control(MAC) protocol for CR network whic...One of the challenging tasks in cognitive radio(CR) networks is to agree on a common control channel to exchange control information. This paper presents a novel medium access control(MAC) protocol for CR network which efficiently and intelligently establishes a common control channel between CR nodes. The proposed protocol is the first CR MAC protocol which is hybrid in nature and lies between global common control channel(GCCC) and non-GCCC family of MAC protocols. The dynamic nature of the protocol makes the CR nodes converge on a newly found control channel quicker whenever the interference from a licensed user is sensed. The analytical results show that the dynamic, hybrid and adaptive nature of proposed protocol yields higher throughputs when compared with other CR MAC protocols.展开更多
Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks ...Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.展开更多
According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One...According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One of the crucial problems for WSNs is the design of medium access control (MAC) protocol. Our method want to adjust the activities of the MAC protocols control to achieve the enery conservation when the wireless communication module of sensor nodes is running, which is the major consumer of energy consumed by sensors energy. The energy efficiency of MAC protocol makes a strong impact on the network performance. To some extent,our research work describes and analyze the sources of energy consumption in MAC layer and simultaneously present an optimal method for the design of MAC protocol. Then we discusses some factors impacting on the performance of MAC protocol and metrics of performance evaluation. Eventually, the coming research direction is summarized.展开更多
In announced hybrid protocols,there are two mechanisms usually employed.One operates in aCSMA family manner and the other follows a token passing family way.However,only one ofthem works efficiently when traffic is li...In announced hybrid protocols,there are two mechanisms usually employed.One operates in aCSMA family manner and the other follows a token passing family way.However,only one ofthem works efficiently when traffic is light or heavy.This results in an inefficient redundance and aburden to the protocol implementation.In this paper,we present a new hybrid concept and its idealmodel in which risky transmissions alternate with safe transmissions in response to the dynamicchange in traffic.Being similar to virtual time CSMA in the abstract,a single control mechanism isproposed to approach this ideal model.The mechanism is rather compact,and its implementationcan be designed to be simple,efficient,reliable,robust,and fully distributed without any centralizedelement at any instant.Simulation results show that the proposed mechanism performs well overthe entire range of the traffic load from light to heavy.展开更多
In Underwater Wireless Sensor Networks(UWSNs),protocols with definite contention windows fail to adapt to changing network conditions,resulting in channel congestion and collisions.This paper introduces the Adaptive L...In Underwater Wireless Sensor Networks(UWSNs),protocols with definite contention windows fail to adapt to changing network conditions,resulting in channel congestion and collisions.This paper introduces the Adaptive Load-based Contention Window Medium Access Control(ALCW-MAC)protocol,which improves the backoff mechanism of the Contention Window Medium Access Control(CW-MAC)protocol.The ALCW-MAC protocol calculates a collision busy factor to evaluate the system load more accurately and dynamically adjusts the contention window size based on the average collision rate and channel busy rate.These dynamic adjustments enable the protocol to reflect real-time network loads,resulting in channel congestion reduction and bandwidth efficiency improvement.Comprehensive experimental results confirm that ALCW-MAC surpasses CW-MAC in throughput and packet loss rate,significantly enhancing network performance and stability.展开更多
基金Supported by the Institute of Electronic Science of China and the National Natural Science Foundation of China.
文摘A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair after a transient period.The transient pe-riod is shorter than that of DQDB.DQCA MAN has the flexibility in bandwidth allocation:the users can achieve different throughputs if the parameters,Pmax(i),are set to be differ-ent.The implementation of priority mechanism is simpler than that of DQDB.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.
基金Supported by the Science Foundation of Shanghai Mu-nicipal Commission of Science and Technology under contract 045115012.
文摘This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.
基金Supported by the"863"project under contract 2001 A A 123016
文摘This letter presents the design and performance of a multi-channel MAC protocol that supports multiple traffics for IEEE 802.11 mobile ad-hoc networks. The dynamic channel selection scheme by receiver decision is implemented and the number of the data channel is independent of the network topology. The priority for real-time traffic is assured by the proposed adaptive back off algorithm and different IFS. The protocol is evaluated by simulation and the results have shown that it can support multiple traffics and the performance is better than the performance that IEEE 802.11 standard provides.
基金supported by the National Natural Science Foundation of China under Grant No.62461041Natural Science Foundation of Jiangxi Province under Grant No.20224BAB212016 and No.20242BA B25068China Scholarship Council under Grant No.202106825021.
文摘Energy efficiency is critical in Wireless Sensor Networks(WSNs)due to the limited power supply.While clustering algorithms are commonly used to extend network lifetime,most of them focus on single-layer optimization.To this end,an Energy-efficient Cross-layer Clustering approach based on the Gini(ECCG)index theory was proposed in this paper.Specifically,a novel mechanism of Gini Index theory-based energy-efficient Cluster Head Election(GICHE)is presented based on the Gini Index and the expected energy distribution to achieve balanced energy consumption among different clusters.In addition,to improve inter-cluster energy efficiency,a Queue synchronous Media Access Control(QMAC)protocol is proposed to reduce intra-cluster communication overhead.Finally,extensive simulations have been conducted to evaluate the effectiveness of ECCG.Simulation results show that ECCG achieves 50.6%longer the time until the First Node Dies(FND)rounds,up to 30%lower energy consumption compared with Low-Energy Adaptive Clustering Hierarchy(LEACH),and higher throughput under different traffic loads,thereby validating its effectiveness in improving energy efficiency and prolonging the network lifetime.
文摘The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting their transmission characteristics. In this paper, some of the decentralized adaptive medium access control (MAC) protocols for CR networks have been critically analyzed, and a novel adaptive MAC protocol for CR networks, decentralized non-global MAC (DNG-MAC), has been proposed. The results show the DNG-MAC outperforms other CR-MAC protocols in terms of time and energy efficiency.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper proposes a novel multichannel medium access control (MAC) protocol based on CDMA that improves network performance and reduces collision probability in wireless ad hoc networks. In the scheme, the code channel is divided into common channel, broadcast channel and several data channels. Simulation results show that the proposed protocol can achieve significantly better performance than the IEEE 802.11 standard.
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
文摘One of the challenging tasks in cognitive radio(CR) networks is to agree on a common control channel to exchange control information. This paper presents a novel medium access control(MAC) protocol for CR network which efficiently and intelligently establishes a common control channel between CR nodes. The proposed protocol is the first CR MAC protocol which is hybrid in nature and lies between global common control channel(GCCC) and non-GCCC family of MAC protocols. The dynamic nature of the protocol makes the CR nodes converge on a newly found control channel quicker whenever the interference from a licensed user is sensed. The analytical results show that the dynamic, hybrid and adaptive nature of proposed protocol yields higher throughputs when compared with other CR MAC protocols.
基金National Natural Science Foundations of China(Nos.60872073,6097501,and 51075068)the Doctoral Fund of Ministry of Education of China(No.20110092130004)the Research Foundation and Education Bureau of Anhui Province of China(No.KJ2009B137)
文摘Medium access control( MAC) protocol of underwater acoustic communication network is a key technology for underwater acoustic networks( UANs). Most of the MAC protocols for wireless terrestrial communication networks have been designed with negligible propagation delay. If it is deployed directly in an underwater environment,the UANs will perform inefficiently. In this paper,the characteristics of underwater acoustic channel are modeled and simulated by using the OPNET simulation tool,which are the speed of sound, propagation loss, and four sources for ambient noise: the turbulence,shipping,wind driven waves and thermal noise. The performance of pure Aloha( P-Aloha),carrier sense multiple access with collision avoidance( CSMA / CA) and multiple access collision avoidance for wireless local area network( MACAW) protocols in underwater acoustic channel environment are evaluated. The different performance of protocols in underwater environment is compared in the simulation.
基金the National Natural Science Foundation of China (90612014)the National High-Technology Research and Development Program of China (863 Program)(2006AA01Z101)
文摘According to analyze the facade phenomenon of wire-less sensor networks(WSNs),this paper proposes a feasible method to state clearly and improve the power control efficiency of wire-less sensor networks(WSNs). One of the crucial problems for WSNs is the design of medium access control (MAC) protocol. Our method want to adjust the activities of the MAC protocols control to achieve the enery conservation when the wireless communication module of sensor nodes is running, which is the major consumer of energy consumed by sensors energy. The energy efficiency of MAC protocol makes a strong impact on the network performance. To some extent,our research work describes and analyze the sources of energy consumption in MAC layer and simultaneously present an optimal method for the design of MAC protocol. Then we discusses some factors impacting on the performance of MAC protocol and metrics of performance evaluation. Eventually, the coming research direction is summarized.
文摘In announced hybrid protocols,there are two mechanisms usually employed.One operates in aCSMA family manner and the other follows a token passing family way.However,only one ofthem works efficiently when traffic is light or heavy.This results in an inefficient redundance and aburden to the protocol implementation.In this paper,we present a new hybrid concept and its idealmodel in which risky transmissions alternate with safe transmissions in response to the dynamicchange in traffic.Being similar to virtual time CSMA in the abstract,a single control mechanism isproposed to approach this ideal model.The mechanism is rather compact,and its implementationcan be designed to be simple,efficient,reliable,robust,and fully distributed without any centralizedelement at any instant.Simulation results show that the proposed mechanism performs well overthe entire range of the traffic load from light to heavy.
基金supported by the National Natural Science Foundation of China(No.62372131).
文摘In Underwater Wireless Sensor Networks(UWSNs),protocols with definite contention windows fail to adapt to changing network conditions,resulting in channel congestion and collisions.This paper introduces the Adaptive Load-based Contention Window Medium Access Control(ALCW-MAC)protocol,which improves the backoff mechanism of the Contention Window Medium Access Control(CW-MAC)protocol.The ALCW-MAC protocol calculates a collision busy factor to evaluate the system load more accurately and dynamically adjusts the contention window size based on the average collision rate and channel busy rate.These dynamic adjustments enable the protocol to reflect real-time network loads,resulting in channel congestion reduction and bandwidth efficiency improvement.Comprehensive experimental results confirm that ALCW-MAC surpasses CW-MAC in throughput and packet loss rate,significantly enhancing network performance and stability.
基金Supported by the National High-Tech Research and Development Plan of China under Grant No.2005AA121570(国家高技术研究发展计划(863))the National Basic Research Program of China under Grant No.2003CB314802(国家重点基础研究发展计划(973))