The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that...The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that adding SO_4^(2-)/medical stone was favorable to removal of volatile matter, while adding Co Mo P/medical stone could inhibit the emission of volatiles. Moreover, the results also showed that adding Co Mo P/medical stone made the total sulfur retention higher, while adding SO_4^(2-)/medical stone made the total sulfur retention lower. Adding modified medical stone was beneficial to removal of sulfate sulfur and pyritic sulfur, while it was beneficial to retaining organic sulfur in the residue. Furthermore, adding Co Mo P/medical stone and SO_4^(2-)/medical stone all could increase the emission of H_2S when the temperature was higher than 450℃. Judging from the kinetics study, it also can be known that addition of the natural minerals could result in a decrease of the pre-exponential factor and also change the apparent activation energy upon comparing the apparent activation energy and the pre-exponential factor of raw Longma coal at 435—537℃.展开更多
With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as deminerali...With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as demineralization,dental caries,and periodontal diseases.In addition,some patients have additional needs to improve their quality of life,such as bleaching teeth.In order to prevent or solve these problems,the modification of CAs is a promising method because their extensive long-term contact with tooth surfaces makes them ideal devices for implementing adjuvant medical functions.In this review,we discuss various advanced CAs with medical functions based on the clinical needs of patients.As far as we know,the additional functions of CAs mainly include antibacterial,remineralization,whitening,and accelerating tooth movement.These functions are achieved by two major pathways,the combination of CAs with drugs/biomaterials and increasing the capacity or affinity of drugs.In addition,we discuss the current limitations of in vitro experiments which are designed to explore the effectiveness and properties of novel CAs,and the challenges of bringing a multifunctional appliance from proposal to clinical application.At the end of this review,we provide insights into the broader prospects for the improvement of CAs.展开更多
基金Upon undertaking the Key Research and Development Program (International Cooperation) of Shanxi (Project Number: 201603D421041)the financial supports of this work by the Provincial Key Scientific Research Projects on Coal-based Low Carbon Energy of Shanxi Province (Project Number: MD2015-01)+1 种基金the National Natural Science Foundation of China-Shanxi Coal-based Low Carbon Joint Fund (U1610254)the NSFC-National Natural Science Foundation of China (No. 51476109)are gratefully acknowledged
文摘The influence of Co Mo P/medical stone and SO_4^(2-)/medical stone on sulfur behavior during the Longma coal pyrolysis was investigated in a fixed bed reactor. Moreover, the kinetics was also studied. It is found that adding SO_4^(2-)/medical stone was favorable to removal of volatile matter, while adding Co Mo P/medical stone could inhibit the emission of volatiles. Moreover, the results also showed that adding Co Mo P/medical stone made the total sulfur retention higher, while adding SO_4^(2-)/medical stone made the total sulfur retention lower. Adding modified medical stone was beneficial to removal of sulfate sulfur and pyritic sulfur, while it was beneficial to retaining organic sulfur in the residue. Furthermore, adding Co Mo P/medical stone and SO_4^(2-)/medical stone all could increase the emission of H_2S when the temperature was higher than 450℃. Judging from the kinetics study, it also can be known that addition of the natural minerals could result in a decrease of the pre-exponential factor and also change the apparent activation energy upon comparing the apparent activation energy and the pre-exponential factor of raw Longma coal at 435—537℃.
基金supported by Postdoctoral Science Foundation of China(Nos.2018M630883 and 2019T120688)Hubei Province Chinese Medicine Research Project(No.ZY2023Q015)Natural Science Foundation of Hubei Province(No.2023AFB665)。
文摘With the increasing demand for beauty and health,clear aligners(CAs)have been widely applied among patients with malocclusion.However,patients treated with CAs also face some potential complications,such as demineralization,dental caries,and periodontal diseases.In addition,some patients have additional needs to improve their quality of life,such as bleaching teeth.In order to prevent or solve these problems,the modification of CAs is a promising method because their extensive long-term contact with tooth surfaces makes them ideal devices for implementing adjuvant medical functions.In this review,we discuss various advanced CAs with medical functions based on the clinical needs of patients.As far as we know,the additional functions of CAs mainly include antibacterial,remineralization,whitening,and accelerating tooth movement.These functions are achieved by two major pathways,the combination of CAs with drugs/biomaterials and increasing the capacity or affinity of drugs.In addition,we discuss the current limitations of in vitro experiments which are designed to explore the effectiveness and properties of novel CAs,and the challenges of bringing a multifunctional appliance from proposal to clinical application.At the end of this review,we provide insights into the broader prospects for the improvement of CAs.