An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ...An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.展开更多
Precision actuation is a foundational technology in high-end equipment domains,where stroke,velocity,and accuracy are critical for processing and/or detection quality,precision in spacecraft flight trajectories,and ac...Precision actuation is a foundational technology in high-end equipment domains,where stroke,velocity,and accuracy are critical for processing and/or detection quality,precision in spacecraft flight trajectories,and accuracy in weapon system strikes.Piezoelectric actuators(PEAs),known for their nanometer-level precision,flexible stroke,resistance to electromagnetic interference,and scalable structure,have been widely adopted across various fields.Therefore,this study focuses on extreme scenarios involving ultra-high precision(micrometer and beyond),minuscule scales,and highly complex operational conditions.It provides a comprehensive overview of the types,working principles,advantages,and disadvantages of PEAs,along with their potential applications in piezo-actuated smart mechatronic systems(PSMSs).To address the demands of extreme scenarios in high-end equipment fields,we have identified five representative application areas:positioning and alignment,biomedical device configuration,advanced manufacturing and processing,vibration mitigation,micro robot system.Each area is further divided into specific subcategories,where we explore the underlying relationships,mechanisms,representative schemes,and characteristics.Finally,we discuss the challenges and future development trends related to PEAs and PSMSs.This work aims to showcase the latest advancements in the application of PEAs and provide valuable guidance for researchers in this field.展开更多
Muscle Shortening Maneuver(MSM)is a rehabilitation technique successfully applied to several pathological conditions.The concept is to passively elongate and shorten the target muscle group of the affected limb.As a r...Muscle Shortening Maneuver(MSM)is a rehabilitation technique successfully applied to several pathological conditions.The concept is to passively elongate and shorten the target muscle group of the affected limb.As a result,the functionality(muscle strength and range of motion)of that limb is improved.The existing system induces these oscillations manually or without any feedback control,which can compromise the effectiveness and standardization of MSM.In this paper,we present a mechatronic system that can precisely deliver motion oscillations to the upper limb for a controllable execution of MSM.First,we collected the parameters(frequency and amplitude of the oscillations)from a system where a motor was heuristically used by a well-experienced therapist to induce the oscillations(without any feedback control).Based on these specifications,we chose the motor and rebuilt the experimental setup,implementing a sliding mode control with a sliding perturbation observer.With our system,the operator can choose a given frequency and amplitude of the oscillations within the range we experimentally observed.We tested our system with ten participants of different anthropometry.We found that our system can accurately reproduce oscillations in the frequency range 0.8 to 1.2 Hz and amplitude range 2 to 6 cm,with a maximum percentage normalized root mean square error around 7%.展开更多
With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy ma...With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy mass of existing bionic butterfly aircraft,this paper proposes the design of a lightweight lithium battery power supply,a chip integrated into a small circuit board,and a reference to the natural characteristics of butterfly wings.The wings are simulated using 0.125 mm polyethylene terephthalate(PET)film to replicate their movement.The driving structure employs a double motor and a four-bar mechanism to achieve natural and smooth wing vibrations.The control system features a lightweight motor,battery,and a high-performance low-power microcontroller for precise control.Using 3D printing technology,a lightweight design is realized,successfully simulating the structure and movement characteristics of a specific butterfly,demonstrating the principles of mechatronics.Furthermore,the design process incorporates multidisciplinary knowledge,and a workshop combining competitive discipline events with innovation and entrepreneurship has been established.This initiative fosters the deep integration of innovation and entrepreneurship education with professional training,effectively cultivating application-oriented technical talents.展开更多
As marine resources gain increasing significance,the development of high-performance propulsion systems has become a critical area focus in underwater robotics research.Drawing inspiration from the unique symmetrical ...As marine resources gain increasing significance,the development of high-performance propulsion systems has become a critical area focus in underwater robotics research.Drawing inspiration from the unique symmetrical morphology and highly agile oscillatory propulsion of stingrays,a compact stingray-inspired robot has been developed.This robot integrates multiple functional components,including a head,an oscillating guide rod mechanism,a flexible undulatory fin propulsion mechanism,a hybrid-material drive shaft,a control system,an energy supply unit,and a tail.Driven by three motors,the hybrid-material drive shaft facilitates efficient power transmission to each undulatory propulsion unit at varying angles,ensuring consistent and stable propulsion.The robot demonstrates advanced maneuverability,capable of performing 360°rotations and S-shaped trajectories on the water surface.Furthermore,its flexible drive shaft enables three-dimensional underwater locomotion through precise control of bending angles.With a compact design measuring 270 mm in length,270 mm in width,and 45 mm in height,and weighing only 346 g,the stingray-inspired robot achieves a maximum swimming speed of 0.617 body lengths per second(BL/s).This stingray-inspired robot holds significant potential for applications in underwater environmental monitoring,covert military reconnaissance,and aquaculture.展开更多
With the rapid development of science and technology,new sensing technology has been used increasingly in mechatronics system,for the system of intelligent,automation and efficiency,provide strong support.Emerging sen...With the rapid development of science and technology,new sensing technology has been used increasingly in mechatronics system,for the system of intelligent,automation and efficiency,provide strong support.Emerging sensor technology in electromechanical integration system of innovative applications not only promote the system of intelligent upgrade,also for its wide application in the field of multiple provides a strong support,and along with the advance of technology and application scenario development,emerging sensor technology in electromechanical integration system to play a more important role.In this regard,this paper first expounds the overview of emerging sensing technology,then analyzes the innovation and integration of emerging sensing technology and mechatronics system,and finally further explores the practical application of emerging sensing technology in mechatronics system,in order to provide some reference for relevant researchers.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible str...The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible structure and control theory, a PD feedback control system, which minimizes the settling time, has been designed. Then, the viable region of poles of the PD dosed-loop control system is decided according to overshoot and the settling time, and an integrated optimal model of structure and control of single arm manipulator is presented. Finally, the parameters of structure and control system are simultaneously optimized with respect to objective function induding the moment of inertia and the control effort of system.展开更多
Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some i...Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.展开更多
With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes...With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.展开更多
Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training red...Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training reduces the incidence of these secondary pathologies, but the physical effort involved in this training is such that there is poor compliance. This paper reports on the design and control of a new "human friendly" orthosis (exoskeleton), powered by high power pneumatic Muscle Actuators (pMAs). The combination of a highly compliant actuation system, with an intelligent embedded control mechanism which senses hip, knee, and ankle positions, velocity, acceleration and force, produces powerful yet inherently safe operation for paraplegic patients. This paper analyzes the motion of ankle, knee, and hip joints under zero loading, and loads which simulate human limb mass, showing that the use of "soft" actuators can provide a smooth user friendly motion. The application of this technology will greatly improve the rehabilitative protocols for paraplegic patients.展开更多
High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high...High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is ...In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is based on model-based control theory in order to provide a damp- ing effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is cal- culated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed veloc- ity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.展开更多
This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable exc...This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable excavator are studied. The paper mainly focuses on trajectory tracking control of the excavator base and robust control of the excavator arm. These will provide the fundamental base for our next research step. In addition, extensive simulation results for trajectory tracking of the excavator base and robust control of the excavator arm are given. Finally, conclusions and further work have been identified.展开更多
Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower main...Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower maintenance cost for railway vehicles,active suspensions are very promising technologies.Being the starting point of commercial application of active suspensions in rail vehicles,tilting trains have become a great success in some countries.With increased technical maturity of sensors and actuators,active suspension has unprecedented development opportunities.In this work,the basic concepts are summarized with new theories and solutions that have appeared over the last decade.Experimental studies and the implementation status of different active suspension technologies are described as well.Firstly,tilting trains are briefly described.Thereafter,an indepth study for active secondary and primary suspensions is performed.For both topics,after an introductory section an explanation of possible solutions existing in the literature is given.The implementation status is reported.Active secondary suspensions are categorized into active and semi-active suspensions.Primary suspensions are instead divided between acting on solid-axle wheelsets and independently rotating wheels.Lastly,a brief summary and outlook is presented in terms of benefits,research status and challenges.The potential for active suspensions in railway applications is outlined.展开更多
In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at lo...In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system.The interaction of nodes may be carried out not only b...The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system.The interaction of nodes may be carried out not only by physical connections but also by the environment which cannot be described by single network using the traditional methods.In order to give out a unified model to quantitatively describe the coupling degradation spreading by both physical connections and environment,a novel Energy-Flow-Field Network(EFFN)and a coupling degradation model based on EFFN are proposed in this paper.The EFFN is driven by energy flow and the state transition of spatially related nodes is triggered by the dissipation energy.An application is conducted on aviation actuation system in which the degradation spreading by fluid-thermal-solid interaction is considered.The degradation path and the most probable fault reason can be obtained by combining the state transition and energy output of nodes,which is consistent with the given scenario.展开更多
Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a ...Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.展开更多
基金supported in part by the Aeronautical Science Foundation of China under Grant 2022Z005057001the Joint Research Fund of Shanghai Commercial Aircraft System Engineering Science and Technology Innovation Center under CASEF-2023-M19.
文摘An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2204203)the National Natural Science Foundation of China(Grant No.52305107)。
文摘Precision actuation is a foundational technology in high-end equipment domains,where stroke,velocity,and accuracy are critical for processing and/or detection quality,precision in spacecraft flight trajectories,and accuracy in weapon system strikes.Piezoelectric actuators(PEAs),known for their nanometer-level precision,flexible stroke,resistance to electromagnetic interference,and scalable structure,have been widely adopted across various fields.Therefore,this study focuses on extreme scenarios involving ultra-high precision(micrometer and beyond),minuscule scales,and highly complex operational conditions.It provides a comprehensive overview of the types,working principles,advantages,and disadvantages of PEAs,along with their potential applications in piezo-actuated smart mechatronic systems(PSMSs).To address the demands of extreme scenarios in high-end equipment fields,we have identified five representative application areas:positioning and alignment,biomedical device configuration,advanced manufacturing and processing,vibration mitigation,micro robot system.Each area is further divided into specific subcategories,where we explore the underlying relationships,mechanisms,representative schemes,and characteristics.Finally,we discuss the challenges and future development trends related to PEAs and PSMSs.This work aims to showcase the latest advancements in the application of PEAs and provide valuable guidance for researchers in this field.
基金supported by the European Union by the Next Generation EU Project ECS00000017‘Ecosistema dell’Innovazione’Tuscany Health Ecosystem(THE,PNRR,Spoke 9:Robotics and Automation for Health)by the Italian Ministry of Education and Research(MUR)in the framework of the FoReLab project(Departments of Excellence).
文摘Muscle Shortening Maneuver(MSM)is a rehabilitation technique successfully applied to several pathological conditions.The concept is to passively elongate and shorten the target muscle group of the affected limb.As a result,the functionality(muscle strength and range of motion)of that limb is improved.The existing system induces these oscillations manually or without any feedback control,which can compromise the effectiveness and standardization of MSM.In this paper,we present a mechatronic system that can precisely deliver motion oscillations to the upper limb for a controllable execution of MSM.First,we collected the parameters(frequency and amplitude of the oscillations)from a system where a motor was heuristically used by a well-experienced therapist to induce the oscillations(without any feedback control).Based on these specifications,we chose the motor and rebuilt the experimental setup,implementing a sliding mode control with a sliding perturbation observer.With our system,the operator can choose a given frequency and amplitude of the oscillations within the range we experimentally observed.We tested our system with ten participants of different anthropometry.We found that our system can accurately reproduce oscillations in the frequency range 0.8 to 1.2 Hz and amplitude range 2 to 6 cm,with a maximum percentage normalized root mean square error around 7%.
基金Innovation and Entrepreneurship Training Project for College Students in Hunan Province in 2024:Design of Small Bionic Butterfly Machine Under the Background of Innovation and Integration(Project No.S202413809022)2023 Innovation and Entrepreneurship Training Project of Hunan College Students:Tiger Butterfly—Bionic Manufacturing and Morphology Research(Project No.S202313809022)。
文摘With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy mass of existing bionic butterfly aircraft,this paper proposes the design of a lightweight lithium battery power supply,a chip integrated into a small circuit board,and a reference to the natural characteristics of butterfly wings.The wings are simulated using 0.125 mm polyethylene terephthalate(PET)film to replicate their movement.The driving structure employs a double motor and a four-bar mechanism to achieve natural and smooth wing vibrations.The control system features a lightweight motor,battery,and a high-performance low-power microcontroller for precise control.Using 3D printing technology,a lightweight design is realized,successfully simulating the structure and movement characteristics of a specific butterfly,demonstrating the principles of mechatronics.Furthermore,the design process incorporates multidisciplinary knowledge,and a workshop combining competitive discipline events with innovation and entrepreneurship has been established.This initiative fosters the deep integration of innovation and entrepreneurship education with professional training,effectively cultivating application-oriented technical talents.
基金supported in-part by the Natural Science Foundation of Guangzhou(2024A04J2552)the National Natural Science Foundation of China(52275011 and 51905105)+3 种基金the Natural Science Foundation of Guangdong Province(2023B1515020080)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST)(2021QNRC001)the Natural Science Foundation of Beijing(3252006)the Fundamental Research Funds for the Central Universities.
文摘As marine resources gain increasing significance,the development of high-performance propulsion systems has become a critical area focus in underwater robotics research.Drawing inspiration from the unique symmetrical morphology and highly agile oscillatory propulsion of stingrays,a compact stingray-inspired robot has been developed.This robot integrates multiple functional components,including a head,an oscillating guide rod mechanism,a flexible undulatory fin propulsion mechanism,a hybrid-material drive shaft,a control system,an energy supply unit,and a tail.Driven by three motors,the hybrid-material drive shaft facilitates efficient power transmission to each undulatory propulsion unit at varying angles,ensuring consistent and stable propulsion.The robot demonstrates advanced maneuverability,capable of performing 360°rotations and S-shaped trajectories on the water surface.Furthermore,its flexible drive shaft enables three-dimensional underwater locomotion through precise control of bending angles.With a compact design measuring 270 mm in length,270 mm in width,and 45 mm in height,and weighing only 346 g,the stingray-inspired robot achieves a maximum swimming speed of 0.617 body lengths per second(BL/s).This stingray-inspired robot holds significant potential for applications in underwater environmental monitoring,covert military reconnaissance,and aquaculture.
文摘With the rapid development of science and technology,new sensing technology has been used increasingly in mechatronics system,for the system of intelligent,automation and efficiency,provide strong support.Emerging sensor technology in electromechanical integration system of innovative applications not only promote the system of intelligent upgrade,also for its wide application in the field of multiple provides a strong support,and along with the advance of technology and application scenario development,emerging sensor technology in electromechanical integration system to play a more important role.In this regard,this paper first expounds the overview of emerging sensing technology,then analyzes the innovation and integration of emerging sensing technology and mechatronics system,and finally further explores the practical application of emerging sensing technology in mechatronics system,in order to provide some reference for relevant researchers.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.
文摘The integrated optimal design of mechanical and control system is discussed in terms of the performance requirement and configuration for the single arm flexible manipulator. By combination of dynamics of flexible structure and control theory, a PD feedback control system, which minimizes the settling time, has been designed. Then, the viable region of poles of the PD dosed-loop control system is decided according to overshoot and the settling time, and an integrated optimal model of structure and control of single arm manipulator is presented. Finally, the parameters of structure and control system are simultaneously optimized with respect to objective function induding the moment of inertia and the control effort of system.
基金supported by National Natural Science Foundation of China (Grant No. 61074110)National Defense Pre-Research Foundation of China (Grant No. B0420060524)
文摘Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.
基金Supported by Open Outreach Project of A New Biomimicry and Crowdsourcing Based Digital Design Platform for High Speed Train from State Key Laboratory of Traction PowerNational Natural Science Foundation of China(Grant No.51575461)
文摘With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.
文摘Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training reduces the incidence of these secondary pathologies, but the physical effort involved in this training is such that there is poor compliance. This paper reports on the design and control of a new "human friendly" orthosis (exoskeleton), powered by high power pneumatic Muscle Actuators (pMAs). The combination of a highly compliant actuation system, with an intelligent embedded control mechanism which senses hip, knee, and ankle positions, velocity, acceleration and force, produces powerful yet inherently safe operation for paraplegic patients. This paper analyzes the motion of ankle, knee, and hip joints under zero loading, and loads which simulate human limb mass, showing that the use of "soft" actuators can provide a smooth user friendly motion. The application of this technology will greatly improve the rehabilitative protocols for paraplegic patients.
基金supported by the National Natural Science Foundation of China(Nos.52272374 and 52072269)the Shanghai Soft Science Research Project(No.22692194800)the Fundamental Research Funds for the Central Universities,China.
文摘High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach.
基金supported by the Fundamental Research Funds for the Central Universities of China
文摘In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is based on model-based control theory in order to provide a damp- ing effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is cal- culated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed veloc- ity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.
文摘This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable excavator are studied. The paper mainly focuses on trajectory tracking control of the excavator base and robust control of the excavator arm. These will provide the fundamental base for our next research step. In addition, extensive simulation results for trajectory tracking of the excavator base and robust control of the excavator arm are given. Finally, conclusions and further work have been identified.
基金Funding was provided by Horizon 2020 Framework Programme(Grant No.777564).
文摘Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower maintenance cost for railway vehicles,active suspensions are very promising technologies.Being the starting point of commercial application of active suspensions in rail vehicles,tilting trains have become a great success in some countries.With increased technical maturity of sensors and actuators,active suspension has unprecedented development opportunities.In this work,the basic concepts are summarized with new theories and solutions that have appeared over the last decade.Experimental studies and the implementation status of different active suspension technologies are described as well.Firstly,tilting trains are briefly described.Thereafter,an indepth study for active secondary and primary suspensions is performed.For both topics,after an introductory section an explanation of possible solutions existing in the literature is given.The implementation status is reported.Active secondary suspensions are categorized into active and semi-active suspensions.Primary suspensions are instead divided between acting on solid-axle wheelsets and independently rotating wheels.Lastly,a brief summary and outlook is presented in terms of benefits,research status and challenges.The potential for active suspensions in railway applications is outlined.
基金financially supported by the National Natural Science Foundation of China(Grant No.51909040)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E073)the Key Technology Research and Development Program of Shandong(Grant No.2020CXGC010702).
文摘In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).
基金co-supported by the National Natural Science Foundation of China(Nos.51875014,51575019,51620105010)Natural Science Foundation of Beijing Municipality(No.L171003)Program 111 of China。
文摘The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system.The interaction of nodes may be carried out not only by physical connections but also by the environment which cannot be described by single network using the traditional methods.In order to give out a unified model to quantitatively describe the coupling degradation spreading by both physical connections and environment,a novel Energy-Flow-Field Network(EFFN)and a coupling degradation model based on EFFN are proposed in this paper.The EFFN is driven by energy flow and the state transition of spatially related nodes is triggered by the dissipation energy.An application is conducted on aviation actuation system in which the degradation spreading by fluid-thermal-solid interaction is considered.The degradation path and the most probable fault reason can be obtained by combining the state transition and energy output of nodes,which is consistent with the given scenario.
基金Project(61273344)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2010-ZD-40)supported by the StateKey Laboratory of Robotics and Systems(HIT),China+1 种基金Project(2008AA04Z208)supported by the National Hi-tech Research and Development Program of ChinaProject(20121101110011)supported by PhD Program Foundation of Ministry of Education,China
文摘Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.