期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Development and prospect on fully mechanized mining in Chinese coal mines 被引量:108
1
作者 Jinhua Wang 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期253-260,共8页
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de... Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward. 展开更多
关键词 Fully mechanized mining mining with large shear height Fully mechanized top coal caving Steeply inclined seam Back filling mining PROSPECT
在线阅读 下载PDF
Field application of non-blasting mechanized mining using high-frequency impact hammer in deep hard rock mine 被引量:3
2
作者 Shao-feng WANG Li-cheng SUN +3 位作者 Yu TANG Yue JING Xi-bing LI Jin-rui YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第9期3051-3064,共14页
A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep ha... A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed. 展开更多
关键词 hard rock mine non-blasting mechanized mining high-frequency impact hammer excavation damage zone stress relief slot mining method
在线阅读 下载PDF
Effect of suppressing dust by multi-direction whirling air curtain on fully mechanized mining face 被引量:6
3
作者 Nie Wen Liu Yanghao +3 位作者 Wei Wenle Hu Xiangming Ma Xiao Peng Huitian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期629-635,共7页
A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, ... A combined method of numerical simulation and field testing was adopted in this study in the interest of solving the problem of hard to control high concentrate dusts on a fully mechanized mining face. In addi- tion, the dust suppression effect of a multi-direction whirling air curtain was studied in this paper. Under the influence of the wall attachment effect, the compressed air which blows out from the two-phase or three-phase radial outlets on the generator of the air curtain can form a multi-direction whirling air curtain, which can cover the whole roadway section of a fully mechanized mining face. The traditional method of controlling dust is a forcing system with exhaust overlap which has the major disadvantage of lacking a jet effect and consequently results in poor dust control. It is difficult to form the air flow field within the range of Lp ≤ 5√S. However, due to the effect of this novel system, the radial airflow can be turned into axial airflow allowing fresh air to flow through the length of the heading. The air flow field which is good at controlling dust diffusion can be formed 12.8 m from the heading face. Furthermore, the field measurement results show that before the application of a multi-direction whirling air curtain, the dust concentration is 348.6 mg/m^3 and 271.4 mg/m^3 respectively at the roadway cross-section measurement points which are 5 m and 10 m from the heading face. However, after the application of the multi-direction whirling air curtain, the dust concentration is only 61.2 mg/m3 and 14.8 mg/m^3, respectively. Therefore, the dust control effect of a multi-direction whirling air curtain is obvious. 展开更多
关键词 Fully mechanized mining face Compressed air Multi-directional whirling air curtain AirflowDust suppression
在线阅读 下载PDF
Application of Gas Drainage Technology in Fully Mechanized Mining Face under Influence of Adjacent Layers
4
作者 DUAN Zong 《外文科技期刊数据库(文摘版)工程技术》 2021年第11期834-837,共6页
Gas disaster is one of the five major disasters in coal mine. Gas drainage can not only ensure the safe production of working face, but also turn gas into waste and improve the economic benefits of mine. Over the year... Gas disaster is one of the five major disasters in coal mine. Gas drainage can not only ensure the safe production of working face, but also turn gas into waste and improve the economic benefits of mine. Over the years, China has made in-depth research and application of coal seam gas extraction technology, and achieved fruitful results. However, due to the complex geological conditions of coal mines, the occurrence of coal seams and gas disasters in different mines are quite different, so a scientific, feasible, economical and reasonable drainage scheme should be designed according to specific conditions. This paper studies the application of gas drainage technology in fully mechanized coal face under the influence of coal mine adjacent layers, which has good guiding significance. 展开更多
关键词 adjacent layer fully mechanized mining face gas drainage TECHNOLOGY
原文传递
Research and Application of Automatic Mining Technology in Fully Mechanized Unmanned Working Face
5
作者 YUAN Kun 《外文科技期刊数据库(文摘版)工程技术》 2021年第1期233-238,共6页
China is rich in minerals. At present, coal shearer and synthetic equipment are mainly used in coal mining. Fully consider the actual production situation and the technical basis, realize the reasonable automatic extr... China is rich in minerals. At present, coal shearer and synthetic equipment are mainly used in coal mining. Fully consider the actual production situation and the technical basis, realize the reasonable automatic extraction technology of three machines, develop the whole working face centralized production automation system suitable for coal-bed methane mining technology and better solve the problem of safe and efficient automatic extraction of working face. 展开更多
关键词 ore bed fully mechanized mining automation mining technology key technology analysis APPLICATION
原文传递
Analysis of Intelligent Mining Technology in Fully Mechanized Coal Face
6
作者 JIANG Shanxue 《外文科技期刊数据库(文摘版)工程技术》 2021年第8期1365-1368,共6页
With the advent of the information age, information technology has been widely used in various fields of society and has achieved remarkable results. It has become the core force to promote social development. As a tr... With the advent of the information age, information technology has been widely used in various fields of society and has achieved remarkable results. It has become the core force to promote social development. As a traditional industry, coal mine production, supported by information technology, has witnessed the emergence and application of various new production technologies and intelligent equipment, which has become the key technological support to promote industrial upgrading and production transformation. In coal mine production, the introduction of modern intelligent equipment and technology can significantly improve production efficiency and ensure production safety, especially for fully mechanized working face to achieve intrinsically safe production and to achieve staff reduction and efficiency improvement work has significant practical significance. 展开更多
关键词 fully mechanized mining working face INTELLIGENCE mining technology
原文传递
Causes and Control Measures of Cross and Multiple Working Procedures of Installation and Withdrawal in Fully Mechanized Coal Mining Face
7
作者 ZHANGZhi 《外文科技期刊数据库(文摘版)工程技术》 2022年第4期079-083,共5页
Complicated mining operations and underground mining are important features of China's coal mining. Due to the limitation of cost and time limit, the coal mining operation can usually be completed through cross-op... Complicated mining operations and underground mining are important features of China's coal mining. Due to the limitation of cost and time limit, the coal mining operation can usually be completed through cross-operation construction. Although this method can shorten the working hours to a certain extent, high risks also follow, which puts forward higher requirements for the safety management of underground work. Especially during the period of installation and withdrawal of fully mechanized coal mining face in coal mine, multiple types of work cooperate with each other, auxiliary transportation of explosion-proof vehicles, frame-type trackless rubber-tyred vehicles, battery cars, support vehicles and other vehicles cooperate with each other at the same time. Therefore, reducing the number of potential safety hazards caused by cross-operation has become the top priority of cross-operation safety management. This paper analyzes and summarizes the reasons for the frequent installation and withdrawal of fully mechanized coal mining face and the cooperation of multiple types of work with cross-operation, and formulates corresponding control measures, hoping to help improve the safety management level of coal mine electromechanical transportation and play a role in preventing accidents. 展开更多
关键词 fully mechanized mining face installation and withdrawal causes of frequent cross operation trackless rubber tyred vehicle transportation solutions
原文传递
Analysis on Specialization of Installation and Withdrawal in Fully Mechanized Coal Mining Face
8
作者 YANPengfei 《外文科技期刊数据库(文摘版)工程技术》 2022年第5期035-039,共5页
The development process of fully mechanized mining has entered a stable stage of development. It can not only improve the coal mining rate, but also effectively ease the labor intensity of workers and speed up the pac... The development process of fully mechanized mining has entered a stable stage of development. It can not only improve the coal mining rate, but also effectively ease the labor intensity of workers and speed up the pace of development of the coal mining industry. Although the mechanized operation is slowly being realized during the fully mechanized coal mining period, the relevant personnel have not paid the necessary attention to the installation and withdrawal link, resulting in its not being developed by leaps and bounds. In view of this, this paper attempts to discuss the installation and withdrawal of fully mechanized coal mining face, the installation and withdrawal of fully mechanized coal mining face and the related matters needing attention after installation and withdrawal. 展开更多
关键词 fully mechanized coal mining face installation rollback Fully mechanized mining equipment
原文传递
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:16
9
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
在线阅读 下载PDF
Similar material simulation research on movement law of roof over-lying strata in stope of fully mechanized caving face with large mining height 被引量:2
10
作者 ZHU Yong-jian PENG Gang 《Journal of Coal Science & Engineering(China)》 2010年第1期6-10,共5页
Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over... Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common. 展开更多
关键词 fully mechanized caving face with large mining height STOPE roof overlyingstrata stable arch structure
在线阅读 下载PDF
Study on dangers of methane in the gob of fully mechanized caving mining
11
作者 鹿广利 吴立荣 邹德蕴 《Journal of Coal Science & Engineering(China)》 2007年第3期340-343,共4页
Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm. This passage preliminarily studied the law of... Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm. This passage preliminarily studied the law of unusual gush of gob gas of the fully mechanized caving mining. According to the basic condition for the gas explosion, made comprehensive analysis and appraisal about the oxygen condition, gas concentration distribute and fire source conditions. And find that there is the dangerous district of gas explosion in a certain area of the producing gob and give the three zone theory of gob gas explosion. 展开更多
关键词 fully mechanized caving mining gob gas emission gas explosion
在线阅读 下载PDF
STUDY ON PRODUCTION SYSTEM OPERATION REGULARITY OF FULLY MECHANIZED SUBLEVEL CAVING MINING AND SEQUENTIAL OPERATION
12
作者 李学忠 王新淮 陈永文 《Journal of Coal Science & Engineering(China)》 1998年第1期30-35,共6页
According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of ... According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of gently inclined complicated geological structure and production shortcomings are found out and reliability of system and output of the working face are predicted finally. 展开更多
关键词 fully mechanized sublevel caving mining face sequential operation computer simulation reliability theory
在线阅读 下载PDF
Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam 被引量:5
13
作者 Liu Jian Liu Zegong +2 位作者 Xue Junhua Gao Kui Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期755-760,共6页
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas... In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable. 展开更多
关键词 Deep borehole blasting Fully mechanized mining Hard thick coal seam Top-coal pre-splitting Gas extraction
在线阅读 下载PDF
The Recent Technological Development of Intelligent Mining in China 被引量:38
14
作者 Jinhua Wang Zenghua Huang 《Engineering》 SCIE EI 2017年第4期439-444,共6页
In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper ... In the last five years, China has seen the technological development of intelligent mining and the application of the longwall automation technology developed by the Longwall Automation Steering Committee. This paper summarizes this great achievement, which occurred during the 12th Five-Year Plan (2011-2015), and which included the development of a set of intelligent equipment for hydraulic-powered supports, information transfers, dynamic decision-making, performance coordination, and the achievement of a high level of reliability despite difficult conditions. Within China, the intelligent system of a set of hydraulic-powered supports was completed, with our own intellectual property rights. An intelligent mining model was developed that permitted unmanned operation and single-person inspection on the work face. With these technologies, the number of miners on the work face can now be significantly reduced. Miners are only required to monitor mining machines on the roadway or at the surface control center, since intelligent mining can be applied to extract middle-thick or thick coal seams. As a result, miners' safety has been improved. Finally, this Darter discusses theprospects and challenges of intelligent mining over the next ten years. 展开更多
关键词 Coal mineIntelligent mining mechanized mining work face Longwall Automation Steering CommitteeIntelligent service center
在线阅读 下载PDF
CHINA'S RECENT DEVELOPMENT IN COAL MINING,PROCESSING AND UTILIZATION
15
作者 范维唐 王成龙 朱德仁 《Journal of Coal Science & Engineering(China)》 1996年第1期1-9,共9页
This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mine... This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included. 展开更多
关键词 coal mining mechanized mining method mining equipment clean coal technology
在线阅读 下载PDF
Innovation and future of mining rock mechanics 被引量:64
16
作者 Manchao He Qi Wang Qunying Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期1-21,共21页
The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working fa... The 121 mining method of longwall mining first proposed in England has been widely used around the world.This method requires excavation of two mining roadways and reservation of one coal pillar to mine one working face.Due to considerable excavation of roadway,the mining roadway is generally destroyed during coal mining.The stress concentration in the coal pillar can cause large deformation of surrounding rocks,rockbursts and other disasters,and subsequently a large volume of coal pillar resources will be wasted.To improve the coal recovery rate and reduce excavation of the mining roadway,the 111 mining method of longwall mining was proposed in the former Soviet Union based on the 121 mining method.The 111 mining method requires excavation of one mining roadway and setting one filling body to replace the coal pillar while maintaining another mining roadway to mine one working face.However,because the stress transfer structure of roadway and working face roof has not changed,the problem of stress concentration in the surrounding rocks of roadway has not been well solved.To solve the above problems,the conventional concept utilizing high-strength support to resist the mining pressure for the 121 and 111 mining methods should be updated.The idea is to utilize mining pressure and expansion characteristics of the collapsed rock mass in the goaf to automatically form roadways,avoiding roadway excavation and waste of coal pillar.Based on the basic principles of mining rock mechanics,the“equilibrium mining”theory and the“short cantilever beam”mechanical model are proposed.Key technologies,such as roof directional presplitting technology,negative Poisson’s ratio(NPR)high-prestress constant-resistance support technology,and gangue blocking support technology,are developed following the“equilibrium mining”theory.Accordingly,the 110 and N00 mining methods of an automatically formed roadway(AFR)by roof cutting and pressure releasing without pillars are proposed.The mining methods have been applied to a large number of coal mines with different overburdens,coal seam thicknesses,roof types and gases in China,realizing the integrated mode of coal mining and roadway retaining.On this basis,in view of the complex geological conditions and intelligent mining demand of coal mines,an intelligent and unmanned development direction of the“equilibrium mining”method is prospected. 展开更多
关键词 mining rock mechanics Equilibrium mining theory Short cantilever beam model Automatically formed roadway without PILLARS Intelligent mining
在线阅读 下载PDF
Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application 被引量:8
17
作者 Zhang Jiangong Miao Xiexing +1 位作者 Huang Yanli Li Meng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期349-352,共4页
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ... Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam. 展开更多
关键词 Super-thick shallow coal seam Fully mechanized top-caving mining Main roof Fracture mechanics model0
在线阅读 下载PDF
Opportunities and Challenges in Deep Mining: A Brief Review 被引量:62
18
作者 Pathegama G. Ranjith Jian Zhao +3 位作者 Minghe Ju Radhika V. S. De Silva Tharaka D. Rathnaweera Adheesha K. M. S. Bandara 《Engineering》 SCIE EI 2017年第4期546-551,共6页
Mineral consumption is increasing rapidly as more consumers enter the market for minerals and as the global standard of living increases. As a result, underground mining continues to progress to deeper levels in order... Mineral consumption is increasing rapidly as more consumers enter the market for minerals and as the global standard of living increases. As a result, underground mining continues to progress to deeper levels in order to tackle the mineral supply crisis in the 21 st century. However, deep mining occurs in a very technical and challenging environment, in which significant innovative solutions and best practice are required and additional safety standards must be implemented in order to overcome the challenges and reap huge eco- nomic gains. These challenges include the catastrophic events that are often met in deep mining engineering: rockbursts, gas outbursts, high in situ and redistributed stresses, large deformation, squeezing and creeping rocks, and high temperature. This review paper presents the current global status of deep mining and high-lights some of the newest technological achievements and opportunities associated with rock mechanics and geotechnical engineering in deep mining. Of the various technical achievements, unmanned workingfaces and unmanned mines based on fully automated mining and mineral extraction processes have become important fields in the 21 st century. 展开更多
关键词 Deep mining Rock mechanics RockburstIn situ stresses mining automation
在线阅读 下载PDF
Vertical transportation system of solid material for backfilling coal mining technology 被引量:8
19
作者 Ju Feng Zhang Jixiong,Zhang Qiang 《International Journal of Mining Science and Technology》 2012年第1期41-45,共5页
For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertica... For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal. 展开更多
关键词 Fully mechanized backfilling coal mining Feeding bore hole Conical buffer Security guarantee
在线阅读 下载PDF
Ground pressure and overlying strata structure for a repeated mining face of residual coal after room and pillar mining 被引量:10
20
作者 Jiang Bangyou Wang Lianguo +2 位作者 Lu Yinlong Sun Xiaokang Jin Gan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期645-652,共8页
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev... To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable. 展开更多
关键词 Residual coal after room and pillar mining Repeated mining Fully mechanized caving face Roof control Support resistance
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部