The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the ...The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development.展开更多
Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude ...Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.展开更多
Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces great...Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.展开更多
As one of the most seismically active regions,Sichuan Basin is a key area of seismological studies in China.This study applies a neural network model with attention mechanisms,simultaneously picking the P-wave arrival...As one of the most seismically active regions,Sichuan Basin is a key area of seismological studies in China.This study applies a neural network model with attention mechanisms,simultaneously picking the P-wave arrival times and determining the first-motion polarity.The polarity information is subsequently used to derive source focal mechanisms.The model is trained and tested using small to moderate earthquake data from June to December 2019 in Sichuan.We apply the trained model to predict first-motion polarity directions of earthquake recordings in Sichuan from January to May 2019,and then derive focal mechanism solutions using HASH algorithm with predicted results.Compared with the source mechanism solutions obtained by manual processing,the deep learning method picks more polarities from smaller events,resulting in more focal mechanism solutions.The catalog documents focal mechanism solutions of 22 events(M_(L) 2.6–4.8)from analysts during this period,whereas we obtain focal mechanism solutions of 53 events(M_(L) 1.9–4.8)through the deep learning method.The derived focal mechanism solutions for the same events are consistent with the manual solutions.This method provides an efficient way for the source mechanism inversion of small to moderate earthquakes in Sichuan region,with high stability and reliability.展开更多
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers...This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future.展开更多
On December 18,2023,an M_(s)6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province,causing substantial casualties and building collapses.The earthquake o...On December 18,2023,an M_(s)6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province,causing substantial casualties and building collapses.The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau,where faults are highly active and the geological structure is complex.In this study,we utilized methods such as relocation,focal mechanism solutions,and earthquake rupture processes to describe seismogenic faults.The results indicated that the majority of aftershocks occurred at a depth of 12 km.The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km.Various geophysical methods exhibited a high degree of consistency in depth exploration.Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction,primarily through unilateral rupture.The main shock was a reverse thrust event with a small dextral strike-slip component.In this study,more regional data,such as previous GPS observations,field geological observations,and the distributions of the primary stress states in the region,were also incorporated.We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults.The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas,accompanied by some landslides,leading to this catastrophic earthquake event.In this article,the activity relationships among the 2022 M_(s)6.9 Menyuan earthquake,the 2019 M_(s)5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed.This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.展开更多
Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving ...Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics,often struggling to withstand excitations with high amplitude.This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism(SRM)to provide primary negative stiffness.The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end,along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors.The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression.The nonlinear stiffness with softening properties can also be achieved by parameter adjustment.The study begins with the forcedisplacement relationship of the integrated mechanism first,followed by the design theory of the cam profile.The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method.The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions,and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.展开更多
The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instabili...The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.展开更多
Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interacti...Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.展开更多
Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanizat...Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanization from 2000 to 2020 in China’s Yangtze River Economic Belt(YREB)using a kilometer-grid-based approach.By employing the partial least squares structural equation modeling method,the intricate drivers of agricultural space urbanization were investigated.The results revealed that from 2000 to 2020,agricultural space urbanization in the YREB covered an area of 28,198 km^(2),accounting for 84.5%of the total increase in urban space.The partial least squares structural equation modeling analysis revealed regional variations in agricultural space urbanization dynamics.In the western YREB,where urbanization is in its initial stage,natural conditions play a weak and indirect role,whereas policy incentives and socioeconomic growth are equally significant in driving agricultural space urbanization.In the eastern YREB,where urbanization is more saturated,the agricultural space urbanization is less constrained by natural factors,showing a high synergy with socioeconomic development.Conversely,in the central Yangtze River Economic Belt,policy influences surpass socioeconomic factors,whereas unfavorable natural conditions and agricultural development act as key drivers of agricultural space urbanization.This study suggests that enhancing agricultural space urbanization quality requires strengthening region-specific policies,providing targeted support for remote areas,rebalancing policy orientation in rapidly urbanizing regions,and establishing a comprehensive evaluation system to ensure policy rationality.展开更多
The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation ...The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation have not been fully elucidated yet.By correlating systematic characterization results with catalytic performance,the open Zr species,i.e.,Zr(OH)(OSi)_(3)moieties,were identified as the active site over the Zr/MFI-BM catalysts for the catalytic transformation of ethanol-acetaldehyde into 1,3-BD.In conjunction with controlled experiments and theory calculations,ethanol and acetaldehyde are proposed to synergistically co-adsorb on the Zr(OH)(OSi)_(3)species in a bi-molecular mode,which assists the acetaldehyde condensation and accelerates the critical Meerwein-Ponndorf-Verley-Oppenauer reduction,and accordingly promotes 1,3-BD formation.These findings will stimulate the search towards new metal-zeolite combinations for efficient production of value-added 1,3-BD via biomass-derived ethanol and beyond.展开更多
Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as se...Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures.展开更多
Pulmonary hypertension(PH)is a pulmonary vascular disease caused by multiple etiologies,characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure,which can lead to severe cardiova...Pulmonary hypertension(PH)is a pulmonary vascular disease caused by multiple etiologies,characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure,which can lead to severe cardiovascular complications.The third type of PH,hypoxic pulmonary hypertension(HPH)caused by chronic lung disease and/or hypoxia,has complex and incomplete pathological mechanism.Current clinical treatment for HPH primarily focus on alleviating symptoms,with limited effectiveness in improving pulmonary vascular remodeling(PVR).Recent studies by various scholars have indicated that certain traditional Chinese medicine(TCM)monomers,extracts,and formulations can inhibit multiple signaling pathways,thereby suppressing pulmonary vascular remodeling and demonstrating favorable efficacy against HPH.This article reviews the pathogenesis of HPH,including pulmonary arterial wall thickening,immune inflammation,and thrombogenesis,and discusses the latest research advancements regarding the pharmacodynamic mechanisms of TCM in treating HPH.展开更多
In this paper,a new single-DOF(degree of freedom)spatial five-link RPRPS mechanism is proposed.The mechanism is designed to develop a new ground mechanism that can move in a consistent direction and change direction u...In this paper,a new single-DOF(degree of freedom)spatial five-link RPRPS mechanism is proposed.The mechanism is designed to develop a new ground mechanism that can move in a consistent direction and change direction using only one actuator.When the actuator rotates in one direction,the ground mobile mechanism can perform a“crawling”motion in a straight line.When the actuator rotates reversely in a special position,it can change the direction of“crawling”motion.Firstly,the concept of the RPRPS mechanism is described,explaining the connection relationships and grounding points between each link.The degree of freedom of the RPRPS mechanism obtained through mobility analysis is 1.Subsequently,the locomotion of the RPRPS mechanism in crawling and turning modes is analyzed separately.Describing the RPRPS mechanism’s movement path through a triangular mesh formed during landing,obtaining the RPRPS mechanism’s cycle step size and steering angle.The RPRPS mechanism’s movement path is described through a triangular mesh formed landing during,from which the mechanism’s cycle step size and steering angle are obtained.Feasibility analysis of turning motion through the positional relationship of COG point on different support surfaces of the RPRPS mechanism.A physical prototype of the RPRPS mechanism is developed,and experiments are conducted on both crawling and turning modes.The results are consistent with the theoretical analysis and verify the feasibility of the proposed mechanism.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowad...Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.展开更多
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ...With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.展开更多
文摘The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.
基金supported by the National Natural Science Foundation of China(52376080 and 52306122)the Anhui Provincial Natural Science Foundation(2308085QE174)+3 种基金the China Postdoctoral Science Foundation(2023TQ0346)the Postdoctoral Fellowship Program of CPSF(GZC20232522)the Fundamental Research Funds for the Central Universities(WK2090000057)the Students’Innovation and Entrepreneurship Foundation of USTC(CY2023C008).
文摘Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.
基金the National Key R&D Program of China(2021YFC3000701)for the financial support。
文摘As one of the most seismically active regions,Sichuan Basin is a key area of seismological studies in China.This study applies a neural network model with attention mechanisms,simultaneously picking the P-wave arrival times and determining the first-motion polarity.The polarity information is subsequently used to derive source focal mechanisms.The model is trained and tested using small to moderate earthquake data from June to December 2019 in Sichuan.We apply the trained model to predict first-motion polarity directions of earthquake recordings in Sichuan from January to May 2019,and then derive focal mechanism solutions using HASH algorithm with predicted results.Compared with the source mechanism solutions obtained by manual processing,the deep learning method picks more polarities from smaller events,resulting in more focal mechanism solutions.The catalog documents focal mechanism solutions of 22 events(M_(L) 2.6–4.8)from analysts during this period,whereas we obtain focal mechanism solutions of 53 events(M_(L) 1.9–4.8)through the deep learning method.The derived focal mechanism solutions for the same events are consistent with the manual solutions.This method provides an efficient way for the source mechanism inversion of small to moderate earthquakes in Sichuan region,with high stability and reliability.
文摘This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future.
基金funded by the National Natural Science Foundation of China(Grant No.42304072)。
文摘On December 18,2023,an M_(s)6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province,causing substantial casualties and building collapses.The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau,where faults are highly active and the geological structure is complex.In this study,we utilized methods such as relocation,focal mechanism solutions,and earthquake rupture processes to describe seismogenic faults.The results indicated that the majority of aftershocks occurred at a depth of 12 km.The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km.Various geophysical methods exhibited a high degree of consistency in depth exploration.Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction,primarily through unilateral rupture.The main shock was a reverse thrust event with a small dextral strike-slip component.In this study,more regional data,such as previous GPS observations,field geological observations,and the distributions of the primary stress states in the region,were also incorporated.We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults.The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas,accompanied by some landslides,leading to this catastrophic earthquake event.In this article,the activity relationships among the 2022 M_(s)6.9 Menyuan earthquake,the 2019 M_(s)5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed.This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.
基金supported by the National Natural Science Foundation of China(Grant No.11732006)the“Qinglan Project”of Jiangsu Higher Education Institutions.
文摘Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics,often struggling to withstand excitations with high amplitude.This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism(SRM)to provide primary negative stiffness.The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end,along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors.The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression.The nonlinear stiffness with softening properties can also be achieved by parameter adjustment.The study begins with the forcedisplacement relationship of the integrated mechanism first,followed by the design theory of the cam profile.The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method.The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions,and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator.
基金financial support from the Distinguished Youth Funds of the National Natural Science Foundation of China(No.52425403)the Hunan Province Graduate Research Innovation Project of China(No.CX20230168)。
文摘The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.
基金supported by National Natural Science Foundation of China(32201752)Xinjiang Tianchi Talents Program (TCYC2023TP02)Key Project of the Natural Science Foundation of Xinjiang Production and Construction Corps (2024DA001)
文摘Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.
基金Fellowship Program of the CPSF,No.GZC20231970National Natural Science Foundation of China,No.41871182。
文摘Understanding the complex mechanisms underlying agricultural space urbanization is essential for sustainable land management.This study identified the spatiotemporal characteristics of the agricultural space urbanization from 2000 to 2020 in China’s Yangtze River Economic Belt(YREB)using a kilometer-grid-based approach.By employing the partial least squares structural equation modeling method,the intricate drivers of agricultural space urbanization were investigated.The results revealed that from 2000 to 2020,agricultural space urbanization in the YREB covered an area of 28,198 km^(2),accounting for 84.5%of the total increase in urban space.The partial least squares structural equation modeling analysis revealed regional variations in agricultural space urbanization dynamics.In the western YREB,where urbanization is in its initial stage,natural conditions play a weak and indirect role,whereas policy incentives and socioeconomic growth are equally significant in driving agricultural space urbanization.In the eastern YREB,where urbanization is more saturated,the agricultural space urbanization is less constrained by natural factors,showing a high synergy with socioeconomic development.Conversely,in the central Yangtze River Economic Belt,policy influences surpass socioeconomic factors,whereas unfavorable natural conditions and agricultural development act as key drivers of agricultural space urbanization.This study suggests that enhancing agricultural space urbanization quality requires strengthening region-specific policies,providing targeted support for remote areas,rebalancing policy orientation in rapidly urbanizing regions,and establishing a comprehensive evaluation system to ensure policy rationality.
文摘The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation have not been fully elucidated yet.By correlating systematic characterization results with catalytic performance,the open Zr species,i.e.,Zr(OH)(OSi)_(3)moieties,were identified as the active site over the Zr/MFI-BM catalysts for the catalytic transformation of ethanol-acetaldehyde into 1,3-BD.In conjunction with controlled experiments and theory calculations,ethanol and acetaldehyde are proposed to synergistically co-adsorb on the Zr(OH)(OSi)_(3)species in a bi-molecular mode,which assists the acetaldehyde condensation and accelerates the critical Meerwein-Ponndorf-Verley-Oppenauer reduction,and accordingly promotes 1,3-BD formation.These findings will stimulate the search towards new metal-zeolite combinations for efficient production of value-added 1,3-BD via biomass-derived ethanol and beyond.
文摘Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures.
基金supported by the Special Funds for the Central Government to Guide Local Science and Technology Development(No.246Z7704G,China)National Natural Science Foundation of China(No.H2024110033,China).
文摘Pulmonary hypertension(PH)is a pulmonary vascular disease caused by multiple etiologies,characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure,which can lead to severe cardiovascular complications.The third type of PH,hypoxic pulmonary hypertension(HPH)caused by chronic lung disease and/or hypoxia,has complex and incomplete pathological mechanism.Current clinical treatment for HPH primarily focus on alleviating symptoms,with limited effectiveness in improving pulmonary vascular remodeling(PVR).Recent studies by various scholars have indicated that certain traditional Chinese medicine(TCM)monomers,extracts,and formulations can inhibit multiple signaling pathways,thereby suppressing pulmonary vascular remodeling and demonstrating favorable efficacy against HPH.This article reviews the pathogenesis of HPH,including pulmonary arterial wall thickening,immune inflammation,and thrombogenesis,and discusses the latest research advancements regarding the pharmacodynamic mechanisms of TCM in treating HPH.
基金Support by Fundamental Research Funds for the Central Universities of China(Grant No.2022JBZY026).
文摘In this paper,a new single-DOF(degree of freedom)spatial five-link RPRPS mechanism is proposed.The mechanism is designed to develop a new ground mechanism that can move in a consistent direction and change direction using only one actuator.When the actuator rotates in one direction,the ground mobile mechanism can perform a“crawling”motion in a straight line.When the actuator rotates reversely in a special position,it can change the direction of“crawling”motion.Firstly,the concept of the RPRPS mechanism is described,explaining the connection relationships and grounding points between each link.The degree of freedom of the RPRPS mechanism obtained through mobility analysis is 1.Subsequently,the locomotion of the RPRPS mechanism in crawling and turning modes is analyzed separately.Describing the RPRPS mechanism’s movement path through a triangular mesh formed during landing,obtaining the RPRPS mechanism’s cycle step size and steering angle.The RPRPS mechanism’s movement path is described through a triangular mesh formed landing during,from which the mechanism’s cycle step size and steering angle are obtained.Feasibility analysis of turning motion through the positional relationship of COG point on different support surfaces of the RPRPS mechanism.A physical prototype of the RPRPS mechanism is developed,and experiments are conducted on both crawling and turning modes.The results are consistent with the theoretical analysis and verify the feasibility of the proposed mechanism.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715900).
文摘Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.
基金financially supported by the National Key Research and Development Program of China(2023YFB3809300)。
文摘With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.