期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion 被引量:11
1
作者 徐岩 胡连喜 +3 位作者 孙宇 贾建波 姜巨福 马庆国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期381-388,共8页
The process of repetitive upsetting-extrusion (RUE) was used to achieve severe plastic deformation (SPD) for an as-cast AZ61 magnesium alloy in temperature range of 285-380 ℃. The microstructure and mechanical pr... The process of repetitive upsetting-extrusion (RUE) was used to achieve severe plastic deformation (SPD) for an as-cast AZ61 magnesium alloy in temperature range of 285-380 ℃. The microstructure and mechanical properties of the as-cast and RUE processed AZ61 alloys were investigated. The results indicated that homogeneous fine-grained structure with mean grain size of 3.5 μm was obtained as the accumulated true strain in the axial direction increased to 4.28 after three RUE passes at 285 ℃. The dominant reason of grain refinement was considered the dynamic recrystallization induced by strain localization. It was also found that the microstructural evolution was affected by temperature and accumulated deformation. The mechanical properties of RUE processed AZ61 alloys were significantly improved owing to grain refinement. Furthermore, the relationship between deformation parameters and mechanical properties of AZ61 alloy prepared by RUE processing was revealed by tensile tests carried out at room temperature. 展开更多
关键词 AZ61 magnesium alloy repetitive upsetting-extrusion severe plastic deformation groin refinement mechanicalproperties
在线阅读 下载PDF
Deep drawing of aluminum alloy 7075 using hot stamping 被引量:9
2
作者 Wen-Chao Xiao Bao-Yu Wang +2 位作者 Yi Kang Wei-Ping Ma Xue-Feng Tang 《Rare Metals》 SCIE EI CAS CSCD 2017年第6期485-493,共9页
In this paper, simulations of deep drawing tests at elevated temperatures were carried out with experimental validation. The aim of this work was to study the effect of process parameters on formability and mechanical... In this paper, simulations of deep drawing tests at elevated temperatures were carried out with experimental validation. The aim of this work was to study the effect of process parameters on formability and mechanical properties of aluminum alloy 7075 in hot stamping process.Process parameters, including blank temperature, stamping speed, blank holder force and friction coefficient, were studied. Stamping tests were conducted at temperatures between 350 and 500 ℃, blank holder force between 0 and 10 kN, stamping speed between 50 and 150 mm·s^-1, and friction coefficient between 0.1 and 0.3. Based on the analysis, it is shown that thickness homogeneity could be improved when the blank is formed at lower temperature,lower blank holder force and lower friction coefficient.Formability could be improved when the blank was well lubricated at about 400 ℃. Formability at stamping speed 50 mm·s^-1 is far better than those at other speeds. The mechanical property analysis shows that the hot stamping process could make the formed part to obtain high quality. 展开更多
关键词 Aluminum alloy 7075 Aluminum hotstamping Process parameters FORMABILITY mechanicalproperty
原文传递
Microstructure and Mechanical Properties of Mg–7.4% Al Alloy Matrix Composites Reinforced by Nanocrystalline Al–Ca Intermetallic Particles 被引量:4
3
作者 A.K.Chaubey B.B.Jha B.K.Mishra 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第4期444-448,共5页
Mg-7.6% Al (in mass fraction) alloy matrix composites reinforced with different volume fractions of nano- crystalline Al3Cas particles were synthesized by powder metallurgy, and the effect of the volume fraction of ... Mg-7.6% Al (in mass fraction) alloy matrix composites reinforced with different volume fractions of nano- crystalline Al3Cas particles were synthesized by powder metallurgy, and the effect of the volume fraction of reinforcement on the mechanical properties was studied. Room temperature compression test reveals considerable improvement on mechanical properties as compared to unreinforced matrix. The compressive strength increases from 683 MPa for unre- inforced alloy matrix to about 767 and 823 MPa for the samples having 20 and 40 vol% of reinforcement, respectively, while retaining appreciable plastic deformation ranging between 12 and 24%. The specific strength of the composites increased significantly, demonstrating the effectiveness of the low-density AlaCas reinforcement. 展开更多
关键词 INTERMETALLICS CONSOLIDATION Dispersion strengthening Powder metallurgy mechanicalproperty Electron microscopy
原文传递
EFFECT OF NANO-FILLER DISPERSION ON THE THERMAL,MECHANICAL AND WATER SORPTION PROPERTIES OF GREEN ENVIRONMENTAL POLYMER 被引量:1
4
作者 Sher Bahadar Khan Kalsoom Akhtar +2 位作者 Jongchul Seo Haksoo Han Malik Abdul Rub 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2012年第5期735-743,共9页
Partially exfoliated nanocomposite (2) has been synthesized by intercalation of poly(propylene carbonate) (PPC) into commercial clay, Cloisite 20B (PPC/C-20B). Nanocomposite 2 was characterized phiso-chemicall... Partially exfoliated nanocomposite (2) has been synthesized by intercalation of poly(propylene carbonate) (PPC) into commercial clay, Cloisite 20B (PPC/C-20B). Nanocomposite 2 was characterized phiso-chemically and exhibited high thermal, mechanical and anti-water sorption properties as compared to PPC and intercalated nanocomposite (1) of PPC/C- 20B having same amount of clay. TGA results revealed that the thermal decomposition temperature (Td, 50%) of 2 increased significantly, being 40 K and 17 K higher than that of pure PPC and 1, respectively, while DSC measurements indicated that the nano-filler dispersion of 2 increased the glass transition temperature from 21℃ to 31℃. Accordingly, 2 showed high elastic modulus, hardness and anti-water absorption capacity. These thermal, mechanical alad anti-water absorption improvements are of great importance for the application of PPC as packaging and biomaterials. 展开更多
关键词 Poly(propylene carbonate) Cloisite 20B NANOCOMPOSITE Solution intercalation Thermal property mechanicalproperty Water absorption property.
原文传递
Effects of Irradiation on the Structure-activity Relationship of Konjac Glucomannan Molecular Chain Membrane 被引量:1
5
作者 吴春华 彭述辉 +6 位作者 温成荣 王丽霞 熊波 刘雅楠 范琳琳 姚闽娜 庞杰 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第6期857-866,共10页
To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of... To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. KGM membrane nrooerties, and it is an ideal Irradiation modification could effectively improve the modification method. 展开更多
关键词 KGM molecular chain irradiation modification membrane structure mechanicalproperty
在线阅读 下载PDF
EFFECTS OF RARE EARTH MIXTURE ON MECHANICAL PROPERTIES OF CuZnAl SHAPE MEMORY ALLOYS 被引量:1
6
作者 N.C.Si and S.C.Sun Departmentof Materials Engineering,Jiangsu University of Science and Technology,Zhenjiang 212013 , China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期509-514,共6页
With thehelpofquantitative metallograph ,tensiletest,electron probeandscan electron mi croscope,theinfluencesof mixture rareearth ( RE) on the grain size, dynamics of grain growth and mechanicalpropertiesof CuZnAlsh... With thehelpofquantitative metallograph ,tensiletest,electron probeandscan electron mi croscope,theinfluencesof mixture rareearth ( RE) on the grain size, dynamics of grain growth and mechanicalpropertiesof CuZnAlshape memoryalloys wereinvestigated . Theex perimentalresultsshowsthat REcanrefinegrainsgreatly,improvethe mechanicalpropertiesremarkably andchangethetensilefracturefrom brittletypebordered grainstoplastictypeinthecondition of maintainingshape memory properties. Moreover microstructuresrevealthatREwhich accumulates on the grain boundariescan restrain grains’growing. In addition, the mechanismsofrefininggrainsizeandimproving mechanicalpropertiesarealsodiscussed. 展开更多
关键词 rareearth CuZnAlalloy mechanicalproperty shape memory alloys
在线阅读 下载PDF
Microstructure characteristics and mechanical properties of TiB/Ti-1.5Fe-2.25Mo composites synthesized in situ using SPS process
7
作者 张朝晖 神祥博 +3 位作者 王富耻 魏赛 李树奎 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2598-2604,共7页
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro... TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite. 展开更多
关键词 titanium boride (TiB) titanium matrix composites (TMCs) spark plasma sintering (SPS) microstructure mechanicalproperties
在线阅读 下载PDF
NOVEL OXIDATION RESISTANT CARBON SILICON ALLOY FIBRES
8
作者 S. Lu , B. Rand and K. D. Bartle University of Leeds,Leeds LS2 9 JT, U. K. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期480-484,共5页
Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in... Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in airto renderthefibresinfusiblebefore pyrolysisat1200℃underinertatmospheretoproduceC Sialloy( CSA) fibres. Theextentofstabili sation wasfoundto becriticalto the development of mechanicalstrength of thefibres which varied with heattreatmenttemperature, showing a maximum at 1200 ℃when thestrength was 1 4 1 6 GPa. Thesestrengthsareremarkably goodconsideringthelow modulus whichis duetothe quite high failurestrains. Thefibrescanshow excellentresistanceto oxidation if given an initialshortexposureto oxygen athigh temperature duetotheformation of an im perceptiblelayer of silica. CSAfibreshavethe advantagesof both carbon fibresand SiCfi bres,thusextended application areascan beenvisaged . 展开更多
关键词 carbon silicon alloy fibres oxidation resistance mechanicalproperty
在线阅读 下载PDF
Effect of Freeze-Thaw Cycles on Mechanical Properties and Permeability of Red Sandstone under Triaxial Compression 被引量:19
9
作者 YU Jin CHEN Xu +2 位作者 LI Hong ZHOU Jia-wen CAI Yan-yan 《Journal of Mountain Science》 SCIE CSCD 2015年第1期218-231,共14页
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of... Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour. 展开更多
关键词 Freeze-thaw cycles Red sandstone Triaxial compression PERMEABILITY Mechanicalproperties
原文传递
Effect of Ni Content on Mechanical Properties and Corrosion Behavior of Al/Sn-9Zn-xNi/Cu Joints 被引量:14
10
作者 M.L.Huang N.Kang +1 位作者 Q.Zhou Y.Z.Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第9期844-852,共9页
The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu s... The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution. 展开更多
关键词 Al-Cu disslmilar-metal solder joint Sn-9Zn-xNi Microstructure Mechanicalproperties Electrochemical corrosion Corrosion potential
原文传递
Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced Mg Matrix Composites 被引量:11
11
作者 X.M.Wang X.J.Wang +2 位作者 X.S.Hu K.Wu M.Y.Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期940-950,共11页
Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of... Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties. 展开更多
关键词 Magnesium matrix composites Ti6Al4V particles Stir casting Microstructure Mechanicalproperties
原文传递
Microstructure,Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al-Mg-Si-Mn Alloy 被引量:7
12
作者 Zu-Qi Hu Xin-Jian Zhang Shu-Sen Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第11期1344-1353,共10页
This work aims to reveal the relationships between the microstructure, mechanical properties and flow behavior of die-casting AlMg5Si2Mn alloy. Results indicated that the microstructure of the die-cast AlMgsSi2Mn cons... This work aims to reveal the relationships between the microstructure, mechanical properties and flow behavior of die-casting AlMg5Si2Mn alloy. Results indicated that the microstructure of the die-cast AlMgsSi2Mn consists of α1-Al grains, fine-size α2-Al grains and (Al + Mg2Si) eutectic. The surface layer observed has the thickness in a range of 120-135 μm, while an ellipse-like surface layer edge is observed in the corner of the plateqike sample. Tensile strength and elongation (3) of the specimens are slightly decreased along the die-filling direction due to the backflow of melt. Pure (Al + Mg2Si) eutectic layer and ultra-fine-size α2-Al grains observed are around the overflow channels. Mass feeding is predominantly responsible for the superior mechanical properties of the round bars as compared to those of plate-like samples. 展开更多
关键词 High-pressure die casting Aluminum alloy Microstructure segregations Mechanicalproperties Die-filling behavior Numerical simulation
原文传递
Microstructure characteristics and mechanical properties of Al/Mg joints manufactured by magnetic pulse welding 被引量:7
13
作者 Congcong Zhu Shiwei Xu +3 位作者 Wenli Gao Yifan Meng Sen Lin Lu Dai 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2366-2375,共10页
The effective connection of 1050 Al and AZ31 Mg was realized by magnetic pulse welding.The maximum tensile-shear force of the dissimilar Al/Mg metal lap joint reached 97%of that of the 1050 Al alloy base material by o... The effective connection of 1050 Al and AZ31 Mg was realized by magnetic pulse welding.The maximum tensile-shear force of the dissimilar Al/Mg metal lap joint reached 97%of that of the 1050 Al alloy base material by optimizing the process parameters.The microstructure of dissimilar Al/Mg welded joints was analysed by Scanning Electron Microscope(SEM),Energy Dispersive Spectrometer(EDS)and Electron Backscattered Diffraction(EBSD).The results show that the key to obtaining high shear strength of Al/Mg dissimilar metal joints is mainly due to the following two reasons.On the one hand,grain refinement and element interdiffusion occur at the interface.On the other hand,no intermetallic compounds are formed at the interface. 展开更多
关键词 Al/Mg dissimilarmaterials Magneticpulsewelding Mechanicalproperties INTERFACE EBSD
在线阅读 下载PDF
Microstructural evolution and mechanical properties of in situ TiB_2/Al composites under high-intensity ultrasound 被引量:3
14
作者 Cun-Guang Chen Ji Luo +2 位作者 Zhi-Meng Guo Wei-Wei Yang Jun Chen 《Rare Metals》 SCIE EI CAS CSCD 2015年第3期168-172,共5页
Microstructural evolution and mechanical properties of in situ TiB2/A1 composites fabricated with exothermic reaction process under high-intensity ultra- sound produced by the magnetostrictive transducer were investig... Microstructural evolution and mechanical properties of in situ TiB2/A1 composites fabricated with exothermic reaction process under high-intensity ultra- sound produced by the magnetostrictive transducer were investigated. In this method, the microstructure and grain refining performance of the TiB2/A1 composites were characterized by optical morphology (OM), scanning electron microscopy (SEM), energy-dispersive spec- trometer (EDS), and X-ray diffraction (XRD) analysis. Microstructural observations show a decreasing trend in the grain size of the composites due to the ultrasound and the content of TiB2 particles in the composites. Compared with the process without ultrasound, the morphology and ag- glomeration of TiB2 particles are improved by high-in- tensity ultrasound. Meanwhile, it is proposed that the formation of TiBz particles occurs via the transformation from TiA13, and at the optimal amount of the reactants, the conversion efficiency of TiA13 into TiB2 almost reaches up to 100 %. Finally, the effects of high-intensity ultrasound and TiB2 particles on the mechanical properties of the TiB2/A1 composites were also discussed. 展开更多
关键词 Microstructural evolution Mechanicalproperties In situ High-intensity ultrasound Magnetostrictive transducer
原文传递
Cooling Rate Sensitivity of RE-Containing Grain Refiner and Its Impact on the Microstructure and Mechanical Properties of A356 Alloy 被引量:3
15
作者 Hua-Rui Zhang Zhen-Bang Liu +2 位作者 Zi-Zhuo Li Guo-Wei Li Hu Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期414-421,共8页
The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology.... The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively. 展开更多
关键词 Grain refinement Cooling rate sensitivity A356 alloy MICROSTRUCTURE Mechanicalproperties
原文传递
Preparation and Mechanical Properties of a Novel Textile Pad for Wound Debridement 被引量:3
16
作者 FU Yi-jun WANG Lu +2 位作者 WANG Fu-jun WANG Wen-zu MENG Si-yi 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期621-624,共4页
Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these variou... Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these various options can explain their potential but also their limitations. In this study, a novel textile pad, which is composed of polyester filaments on the fleecy side and a bioeompatible coating on the opposite side, was made to provide a safe, inexpensive, easier and especially more efficient debridement process that can be used in all healthcare settings by all healthcare practitioners. Eighteen kinds of samples were prepared with different pile density, ground yarn count and coating amount. Dimensional morphology, stitch density, mass per unit area and mechanical properties were investigated to study the intrinsic relationship of structure and properties of textile pad for wound debridement. Results showed that tensile strength and suturing strength at piped site increased obviously with the increment of ground yarn count, while the amount of coating could also have a slight impact on these two properties. However, compressive load was mainly affected by pile density, with no obvious relation to ground yarn count and coating amount. 展开更多
关键词 TEXTILE PAD WOUND DEBRIDEMENT PILE DENSITY mechanicalproperties
在线阅读 下载PDF
Comparative study of β-Si_3N_4 powders prepared by SHS sintered by spark plasma sintering and hot pressing 被引量:3
17
作者 Ling Bai Xiaodong Mao Weiping Shen Changchun Ge 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期271-275,共5页
β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical prop... β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical properties of Si3N4 ceramics prepared using this method were compared with those obtained by hot pressing process. Well densified Si3N4 ceramics with finer and homogeneous microstructure and better mechanical properties were obtained in the case of the SPS technique at 200°C lower than that of hot pressing. The microhardness is 15.72 GPa, the bending strength is 716.46 MPa, and the fracture toughness is 7.03 MPa·m1/2. 展开更多
关键词 self-propagating high-temperature synthesis (SHS) hot pressing spark plasma sintering (SPS) silicon nitride mechanicalproperties
在线阅读 下载PDF
An Approach for Preparation of Excellent Antiwear PTFE Nanocomposites by Filling As-prepared Carbon Nanotubes/Nanorods(CNT/CNR)Mixed Nano-Carbon Material 被引量:2
18
作者 Cheng Zhilin Cao Baochong +2 位作者 Liu Zan Qin Dunzhong Zhu Aiping 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第2期34-40,共7页
The one-dimensional carbon nanotubes/nanorods(CNT/CNR)mixed nano-carbon material was successfully prepared by halloysite nanotubes(HNTs)as the template for the first time,in which CNT was formed through PVA modificati... The one-dimensional carbon nanotubes/nanorods(CNT/CNR)mixed nano-carbon material was successfully prepared by halloysite nanotubes(HNTs)as the template for the first time,in which CNT was formed through PVA modification in internal surface of HNTs and CNR was obtained by nanocasting PVA in hollow nanostructure of HNTs.The CNT of the mixture with flexible structure has ca.20 nm in pore diameter and ca.500 nm in length,whereas the CNR with hard and solid structure shows ca.30 nm in diameter and ca.2μm in length.For application as fillers,the CNT/CNR mixed nano-material is used to reinforce the properties of polytetrafluoroethylene(PTFE).The mechanical and tribological properties of PTFE nanocomposites were intensively examined by a series of testing.The ring-on-ring counterface was used to evaluate the tribological behavior of the nanocomposites.The results showed that the volume wear rate of the CNT/CNR-reinforced PTFE nanocomposite after being filled with 0.3%of CNT/CNR was only 1/700 of that of the pure PTFE under a load of 200 N and a rotary speed of 200 r/min,while other mechanical and tribological performance was comparable to the performance of pure PTFE,which exhibited a desirable application prospect. 展开更多
关键词 carbon materials nanocomposite polytetrafuoroethylene mechanicalproperties tribological properties
在线阅读 下载PDF
Effects of salinity on the nail-holding power of dimension lumber used in light-frame wood building 被引量:1
19
作者 Zeli Que LingYang +3 位作者 FeibinWang Xuna Zhu Yongbing Wang Takuro Mori 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期765-770,共6页
We studied the effect of salinity on nail-hold- ing power in wood construction. In saline solution, the holding power of nails was less than in purified water. With the increase of salt concentration, the surface and ... We studied the effect of salinity on nail-hold- ing power in wood construction. In saline solution, the holding power of nails was less than in purified water. With the increase of salt concentration, the surface and side nail- holding power of the wood specimens both declined, but the differences between salinity treatments were not sig- nificant. However, compared to the surface and side nail- holding power, the power on the edge was generally less and the difference was not obvious in different salt con- centrations. In the same salt concentration, with the extension of the processing cycle, the performance of holding power of nails showed a downward trend, expect the temporary rise in the middle. 展开更多
关键词 Nail-holding power SALINITY Mechanicalproperties Dimension lumber JOINTS
在线阅读 下载PDF
Underwater Wet Welding for HSLA Steels: Chemical Composition, Defects, Microstructures, and Mechanical Properties 被引量:1
20
作者 Wen-Bin Gao Dong-Po Wang +2 位作者 Fang-Jie Cheng Cai-Yan Deng Wei Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第9期1097-1108,共12页
The effect of water depth on underwater wet welds was investigated by underwater wet shielded metal-arc welding technique. The microstructures, chemical composition, welding defects, and mechanical properties were stu... The effect of water depth on underwater wet welds was investigated by underwater wet shielded metal-arc welding technique. The microstructures, chemical composition, welding defects, and mechanical properties were studied. The contents of alloying elements decrease, while the oxygen content increases with water depth. Within 55 m depth, the carbon monoxide reaction is controlling the oxygen content which will further control the contents of alloying elements. The columnar microstructures in weld metal obtained at shallow water consist of grain boundary ferrite, side-plate ferrite, and acicular ferrite, while those at depth greater than 11 m exhibit more proeutectoid ferrite due to the loss of alloying elements. Mechanical properties are a strong function of depth owing to the increase in oxidation of alloying elements and porosity. Welds obtained within 11 m show preferable strength, ductility, and toughness. The mechanical properties significantly drop from 11 to 25 m because of the increased porosity and oxidation of alloying elements. 展开更多
关键词 Underwater wet welding ELECTRODE High-strength steel MICROSTRUCTURES Mechanicalproperties
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部