期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
1
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Architecture characterization of orchard trees for mechanical behavior investigations
2
作者 Min Kyung Jeon Matthew Burrall +2 位作者 Tae Hyuk Kwon Jason T.DeJong Alejandro Martinez 《Biogeotechnics》 2025年第2期1-12,共12页
Characterizing the architecture of tree root systems is essential to advance the development of root-inspired anchorage in engineered systems.This study explores the structural root architectures of orchard trees to u... Characterizing the architecture of tree root systems is essential to advance the development of root-inspired anchorage in engineered systems.This study explores the structural root architectures of orchard trees to understand the interplays between the mechanical behavior of roots and the root architecture.Full three-dimensional(3D)models of natural tree root systems,Lovell,Marianna,and Myrobalan,that were extracted from the ground by vertical pullout are reconstructed through photogrammetry and later skeletonized as nodes and root branch segments.Combined analyses of the full 3D models and skeletonized models enable a detailed examination of basic bulk properties and quantification of architectural parameters.While the root segments are divided into three categories,trunk root,main lateral root,and remaining roots,the patterns in branching and diameter distributions show significant differences between the trunk and main laterals versus the remaining lateral roots.In general,the branching angle decreases over the sequence of bifurcations.The main lateral roots near the trunk show significant spreading while the lateral roots near the ends grow roughly parallel to the parent root.For branch length,the roots bifurcate more frequently near the trunk and later they grow longer.Local thickness analysis confirms that the root diameter decays at a higher rate near the trunk than in the remaining lateral roots,while the total cross-sectional area across a bifurcation node remains mostly conserved.The histograms of branching angle,and branch length and thickness gradient can be described using lognormal and exponential distributions,respectively.This unique study presents data to characterize mechanically important structural roots,which may help link root architecture to the mechanical behaviors of root structures. 展开更多
关键词 Bio-inspired foundation Root architecture 3D root model SKELETON Statistical variation mechanical pullout test
在线阅读 下载PDF
Atomic-scale observation of the deformation and failure of diamonds by in-situ double-tilt mechanical testing transmission electron microscope holder 被引量:3
3
作者 Yizhi Zhang Yeqiang Bu +4 位作者 Junquan Huang Tianye Jin Anmin Nie Hongtao Wang Yongjun Tian 《Science China Materials》 SCIE EI CSCD 2020年第11期2335-2343,共9页
In-situ transmission electron microscopy(TEM)has been demonstrated to be a powerful method in resolving challenging problems such as interactions among various defects.To take advantage of the atomic resolution of adv... In-situ transmission electron microscopy(TEM)has been demonstrated to be a powerful method in resolving challenging problems such as interactions among various defects.To take advantage of the atomic resolution of advanced TEMs,a compact five-degree-of-freedom nanomanipulator was integrated with an indenter that was made of nanotwinned diamonds,for both the in-situ mechanical testing and double tilting of TEM samples.As a demonstration,in-situ bending tests were performed on the?111?,?110?and?100?single-crystal diamond needles.The tests revealed the{111}cleavage to be the dominant failure mode.The in-situ indentation on a diamond nanoplate led to curved cracks consisting of nanometer-scale steps,which were identified to be atomic flat{111}facets.The atomic-scale observation of the deformation and failure of diamonds demonstrated the stability of the entire system and the durability of the indenter.We expect that more delicate research can be carried out by means of this holder in the near future,including in-situ stimulation,atomic characterization,and tomography. 展开更多
关键词 mechanical testing holder double tilt DIAMOND in situ TEM TOMOGRAPHY
原文传递
Mechanical and Metallurgical Characteristics of Wire-Arc Additive Manufactured HSLA Steel Component Using Cold Metal Transfer Technique 被引量:1
4
作者 Prabhakaran B Sivaraj P +1 位作者 Malarvizhi S Balasubramanian V 《Additive Manufacturing Frontiers》 2024年第4期199-208,共10页
Recently,the application of wire-arc additive manufacturing(WAAM)for the production of metallic products is gaining traction.WAAM is associated with the direct energy deposition technique and therefore has a higher de... Recently,the application of wire-arc additive manufacturing(WAAM)for the production of metallic products is gaining traction.WAAM is associated with the direct energy deposition technique and therefore has a higher deposition rate(approximately 4 kg/h).For this reason,it is of greater interest than powder-based additive manufacturing techniques.Industrial applications such as marine and offshore structures and pressure vessels for space programs commonly utilize high-strength low-alloy(HSLA)steel.HSLA steel components produced by casting methods exhibit defects due to oxidation.Therefore,cold metal transfer(CMT)-WAAM was adopted in this study to fabricate HSLA steel components.The metallurgical properties were analyzed using microscopic and diffraction techniques.The effects of the evolved microstructures on mechanical properties,such as strength,microhardness,and elongation to fracture,were evaluated.To analyze and test the structure,two regions were selected,namely,top and bottom.Microstructural analyses revealed that both regions were primarily composed of acicular ferrite,polygonal ferrite,and bainitic structures.The bottom region exhibited superior mechanical properties compared with the top region.The improved strength at the bottom region can be ascribed to the formation of a high density of dislocations and finer grains. 展开更多
关键词 Wire-arc additive manufacturing Cold metal transfer High strength low alloy steel mechanical testing Direct energy deposition
在线阅读 下载PDF
Polydopamine based interfacial adhesion enhancement of Ti/CF/PEEK hybrid laminates
5
作者 Ding YUAN Yong LI +3 位作者 Zhihui JIAO Dongdong YAN Yubo HU Dongsheng LI 《Chinese Journal of Aeronautics》 2025年第9期447-458,共12页
The limited metal-polymer interlaminar property is a significant obstacle to the advancement of Ti/Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)hybrid laminates.We report for the first time a novel method by utilizing... The limited metal-polymer interlaminar property is a significant obstacle to the advancement of Ti/Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)hybrid laminates.We report for the first time a novel method by utilizing the mussel-inspired Polydopamine(PDA)to introduce a strong chemical-physical bonding between titanium and PEEK.The enhanced Fiber-Metal Laminate(FML)exhibits a significant 48.82%enhancement in Interlaminar Shear Strength(ILSS).In addition,it alters the failure mode of the FML from single metal-resin interlaminar delamination to a multi-mechanism,including debonding,delamination of different composite layers,leading to a 28.57%improvement in maximum displacement. 展开更多
关键词 Layered structures ADHESION mechanical testing DEBONDING POLYDOPAMINE
原文传递
Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel 被引量:17
6
作者 Y.Prawoto N.Jasmawati K.Sumeru 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第5期461-466,共6页
In industrial application,unintentional manufacturing line troubles often consequence in heating raw materials excessively,in terms of either time or temperature.One of the effects of such occurrence is a product with... In industrial application,unintentional manufacturing line troubles often consequence in heating raw materials excessively,in terms of either time or temperature.One of the effects of such occurrence is a product with a variation of prior austenite grain size,even if after the heat treatment the end result is the same,martensite.The variation of the prior austenite grain size is believed to vary the end results of the martensite.This undesirable variation includes the variation of fatigue resistance,impact strength,yield strength,hardness,etc.This research studies the effect of the prior austenite grain size on the morphology of the martensite microstructure.The results show that within the typical industrial application of temperature and holding time set up,as holding time or the temperature increases,the prior austenite average diameter increases.The block and packet sizes in the martensite also increase.The variation of mechanical property dependence on the grain size is indeed due to the different characteristics reflected in the martensite morphology.With respect to the same area,smaller grain has more blocks and packets,which agrees with higher dislocation density verified with transmission electron microscopic evaluation. 展开更多
关键词 Heat treating mechanical testing Carbon/alloy steels
原文传递
Mechanical and tribological properties of graphene nanoplatelets-reinforced titanium composites fabricated by powder metallurgy 被引量:3
7
作者 Zhen Cao Jiong-li Li +2 位作者 Hai-ping Zhang Wen-bo Li Xu-dong Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第11期1357-1362,共6页
Titanium matrix composite reinforced by graphene nanoplatelets(GNPs)was fabricated via powder metallurgy route.Hot isostatic pressing and hot extrusion were used to consolidate the mixed powder of GNPs and TC4 titaniu... Titanium matrix composite reinforced by graphene nanoplatelets(GNPs)was fabricated via powder metallurgy route.Hot isostatic pressing and hot extrusion were used to consolidate the mixed powder of GNPs and TC4 titanium(Ti)alloy.The microstructures,mechanical properties and sliding wear performance of Ti/GNPs composite had been researched to evaluate the rein forcing effect of GNPs on tita nium matrix.Microstructure observation indicates that GNPs could restrain grai n growth slightly in titanium matrix.Titanium matrix and graphene exhibit a clean and firm interface formed by means of metallurgical bonding on atomic scale.Compared with the monolithic titanium alloy,the composite with 1.2 vol.%GNPs exhibits significantly improved elastic modulus and strength.The sliding wear test shows that there is an obvious enhancement in the tribological performance of Ti/GNPs composite with 1.2 vol.%GNPs.The results of this work indicate that GNP is an efficient reinforcenient material in titanium matrix.The strengthening mechanism including precipitates strengthening,load transfer and grain refinement mechanism of GNPs in titanium matrix was discussed.A modified shear-lag model was used to analyze the reinforcement contribution of the stress transfer mechanism.The calculation shows that the stress load mechanism constitutes the main strengthening mechanism in Ti/GNPs composite. 展开更多
关键词 Titanium matrix composite GRAPHENE mechanical testing Tribological property Powder metallurgy
原文传递
Study on the Effect of Surface Modification on the Mechanical and Thermal Behaviour of Flax,Sisal and Glass Fiber 被引量:2
8
作者 C.M.Meenakshi A.Krishnamoorthy 《Journal of Renewable Materials》 SCIE 2019年第2期153-169,共17页
Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment.The aim of this study is to analyze the effect of s... Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment.The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical,thermal,hygrothermal,and water absorption behaviors of flax,sisal,and glass fiber-reinforced epoxy hybrid composites.The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile,flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%,36%,and 51%,respectively,after surface alkaline treatment.In addition,the hygrothermal analysis and water absorption capacity are studied and also the Interfacial bonding properties were analyzed using Scanning Electron Microscopic images.The thermal analysis using thermogravimetric analyzer reveals that the decomposition temperature for hybrid fiber reinforced composites are between 306 and 312℃.In conclusion,surface treatment improves the performance of natural fiber in hybrid fiber-reinforced composites,particularly flax fiber. 展开更多
关键词 Hybrid composite surface treatments mechanical testing thermal analysis hygrothermal testing water absorption SEM analysiss
在线阅读 下载PDF
Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis 被引量:2
9
作者 张加宏 冒晓莉 +4 位作者 刘清惓 顾芳 李敏 刘恒 葛益娴 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期330-338,共9页
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by... Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper. Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process, which inevitably generates the undercut of the nanobeam clamping. In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut, dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L, which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data. By using a least-square fit expression including △L, we finally extract Young's modulus from the measured resonance frequency versus effective length dependency and find that Young's modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon. This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm. 展开更多
关键词 silicon nanobeams with undercut mechanical properties mechanical testing finite element method
原文传递
The effect of strontium on the microstructure and mechanical properties of Mg-6Al-0.3Mn-0.3Ti-1Sn 被引量:1
10
作者 Huseyin Sevik S.Can Kurnaz 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第3期214-219,共6页
In this work,the microstructural and mechanical properties of the certain magnesium-based alloys were investigated.The alloys were produced under a controlled atmosphere by a squeeze-casting process and characterized ... In this work,the microstructural and mechanical properties of the certain magnesium-based alloys were investigated.The alloys were produced under a controlled atmosphere by a squeeze-casting process and characterized by optical microscopy(OM),scanning electron microscopy(SEM),an energy-dispersive spectrometer(EDS)and X-ray diffraction(XRD)analysis.The results indicated that the addition of strontium element modified the structure and refined the grain size.The hardness and yield strength of the alloys increased continuously with increasing strontium content,while the elongation was gradually decreased.Also,the tensile strength value of the based alloy was increased by adding Sr up to 1 wt.%.After more addition of Sr,the tensile strength starts to diminish. 展开更多
关键词 Mg-Al alloy STRONTIUM MICROSTRUCTURE mechanical testing
在线阅读 下载PDF
The Mechanical and Crystallographic Evolution of Stipa tenacissima Leaves During In-Soil Biodegradation
11
作者 Zakia Khelifi Mohammed Amine Allal +2 位作者 Nabil Abou-bekr Said Taibi Benoit Duchemin 《Journal of Renewable Materials》 SCIE 2018年第3期336-346,共11页
The in-soil biodegradation of Stipa tenacissima(alfa)leaves was examined.Non-linear mechanical testing was performed at various biodegradation stages.Tensile strength,loading and unloading Young’s moduli and dissipat... The in-soil biodegradation of Stipa tenacissima(alfa)leaves was examined.Non-linear mechanical testing was performed at various biodegradation stages.Tensile strength,loading and unloading Young’s moduli and dissipation energy decreased with the burial time,whereas plasticity increased.Field-emission scanning electron microscopy(FE-SEM)showed that the fracture cracks propagated in the longitudinal direction in the raw material,resulting in a fracture mode consisting of a mixture of middle lamella delamination and fiber pull-out.In contrast,the cracks were perpendicular to the stem axis in the biodegraded material,demonstrating an important strength loss of the load-bearing fibers.This strength loss was correlated with rapid cellulose degradation.A novel X-ray diffraction(XRD)model was implemented in order to take into account anisotropic size broadening.For the first time,XRD demonstrated the action of biodegradation on unrefined plant tissues under quasi in-situ conditions.Biodegradation induced a progressive loss of crystalline cellulose accompanied with anisotropic crystallite thinning. 展开更多
关键词 ALFA mechanical testing FE-SEM XRD BIODEGRADATION
在线阅读 下载PDF
TA15/TaZrNb multi-element alloy prepared via diffusion bonding:Tensile-strength model and performance of a representative volume element embedded with a sphere
12
作者 Wei Chen Fenglei Huang +4 位作者 Chuanting Wang Ruijun Fan Pengjie Zhang Lida Che Aiguo Pi 《Defence Technology(防务技术)》 2025年第8期36-51,共16页
In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere wa... In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure. 展开更多
关键词 Diffusion bonding Multi-element alloy Joint microstructure In-situ mechanical test X-ray mCT Sphere-containing structure
在线阅读 下载PDF
Weldability evaluation of in-service ethylene cracking furnace tubes after small punch sampling
13
作者 Jie Wang Yang-yan Zheng Xiang Ling 《Journal of Iron and Steel Research International》 2025年第10期3607-3622,共16页
The small punch test technique facilitates the convenient acquisition of the mechanical properties of in-service equipment materials and the assessment of their remaining service life through sampling.However,the weld... The small punch test technique facilitates the convenient acquisition of the mechanical properties of in-service equipment materials and the assessment of their remaining service life through sampling.However,the weldability of components with thin walls after small punch sampling,such as ethylene cracking furnace tubes,requires further investigation.Therefore,the weldability of in-service ethylene cracking furnace tubes following small punch sampling was investigated through nondestructive testing,microstructural characterization,and mechanical testing.Additionally,the impact of small punch sampling size and residual stress on the creep performance of the specimens was studied using an improved ductility exhaustion model.The results indicate that both the surface and interior of the weld repair areas on new furnace tubes and service-exposed furnace tubes after small-punch sampling are defect-free,exhibiting good weld quality.The strength of the specimens after weld repair was higher than that before sampling,whereas toughness decreased.Weld repair following small punch sampling of furnace tubes is both feasible and necessary.Furthermore,a linear relationship was observed between specimen thickness,diameter,and creep fracture time.The residual stress of welding affects the creep performance of the specimen under different stresses. 展开更多
关键词 Ethylene cracking furnace tube WELDABILITY Small punch sampling MICROSTRUCTURE mechanical test Ductility exhaustion model
原文传递
Consensus⁃Based Cryptographic Framework for Side⁃Channel Attack Resilience in Cloud Environments
14
作者 I.Nasurulla K.Hemalatha +1 位作者 P.Ramachandran S.Parvathi 《Journal of Harbin Institute of Technology(New Series)》 2025年第2期90-104,共15页
Cloud environments are essential for modern computing,but are increasingly vulnerable to Side-Channel Attacks(SCAs),which exploit indirect information to compromise sensitive data.To address this critical challenge,we... Cloud environments are essential for modern computing,but are increasingly vulnerable to Side-Channel Attacks(SCAs),which exploit indirect information to compromise sensitive data.To address this critical challenge,we propose SecureCons Framework(SCF),a novel consensus-based cryptographic framework designed to enhance resilience against SCAs in cloud environments.SCF integrates a dual-layer approach combining lightweight cryptographic algorithms with a blockchain-inspired consensus mechanism to secure data exchanges and thwart potential side-channel exploits.The framework includes adaptive anomaly detection models,cryptographic obfuscation techniques,and real-time monitoring to identify and mitigate vulnerabilities proactively.Experimental evaluations demonstrate the framework's robustness,achieving over 95%resilience against advanced SCAs with minimal computational overhead.SCF provides a scalable,secure,and efficient solution,setting a new benchmark for side-channel attack mitigation in cloud ecosystems. 展开更多
关键词 Cloud computing side channel attacks HAVAL cryptographic hash Wilcoxon signed⁃rank test consensus mechanism improved schmidt⁃samoa cryptography
在线阅读 下载PDF
Discussion and Research on Orthopedic Biomechanics Testing Technology
15
作者 Jinkui Liang Wanzong Liu +1 位作者 Xiuxiu Wang Yuanyu Li 《Journal of Clinical and Nursing Research》 2020年第6期67-70,共4页
With the continuous development of today's science and technology,orthopedic research has also achieved continuous updates in materials and machinery.In this case,the mechanics testing technology of orthopedics al... With the continuous development of today's science and technology,orthopedic research has also achieved continuous updates in materials and machinery.In this case,the mechanics testing technology of orthopedics also needs to be further updated and developed,so that it can effectively meet the requirement for today's orthopedic mechanical testing.Based on this,this article analyzes several advanced orthopedic mechanics testing techniques.It is hoped that this analysis can provide a reference for the good application and development of orthopedic mechanics testing technology. 展开更多
关键词 ORTHOPEDICS BIOMECHANICS mechanical testing testing technology
暂未订购
Mechanical behaviors of cement systems in different conditions
16
作者 Zheng Youzhi Xu Bingqing +3 位作者 Pu Junhong Mu Naiqu Wang Bin Li Ming 《Natural Gas Industry B》 2017年第3期212-216,共5页
At present,the mechanical testing on the ductility of cement sheath is faced with multiple technical difficulties.In this paper,numerical simulation and laboratory evaluation were adopted to compare the mechanical per... At present,the mechanical testing on the ductility of cement sheath is faced with multiple technical difficulties.In this paper,numerical simulation and laboratory evaluation were adopted to compare the mechanical performance of typical elastic,flexible,ductile and neat cement systems at home and abroad by different loading rates,value range of stress-strain curve,confining pressure and temperature.It is shown that when the loading rate is lower,the stress-strain curve of set cement is not smooth,but distorted,and the stress cannot be responded in time;that when the loading rate is higher,the stress-strain curve of set cement is smooth,and the yield stage is remarkable,indicating that higher loading rate can reflect the yield strain behavior of set cement more truly;that the recommended Young's modulus range of set cement should be changed based on the actual downhole conditions;that temperature has more effect on yield stress and ultimate strain,but less effect on elastic modulus;that confining pressure has more effect on ultimate stress and ultimate strain,but less effect on elastic modulus;and that when the confining pressure is lower and temperature is higher,the yield stage of set cement is more remarkable.It is concluded that these mechanical behaviors of cement system in different conditions provide a technical support for understanding the mechanical essence of downhole cement sheath and exploring the mechanical integrity of cement sheath and even that of the whole wellbore. 展开更多
关键词 Well cementing Set cement mechanical testing on ductility of cement sheath Loading rate STRESS-STRAIN Confining pressure TEMPERATURE
暂未订购
Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis
17
作者 张加宏 冒晓莉 +4 位作者 刘清惓 顾芳 李敏 刘恒 葛益娴 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期334-342,共9页
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by ... Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young’s modulus from the measured resonance frequency versus effective length dependency and find that Young’s modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm. 展开更多
关键词 silicon nanobeams with undercut mechanical properties mechanical testing finite element method
全文增补中
Influence of SBS modifiers on viscoelastic mechanical behavior of modified asphalt 被引量:1
18
作者 孟勇军 张肖宁 逯彦秋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期157-160,共4页
In order to verify the influence of different block proportions S/B on the effect of SBS modified asphalt,the dynamic mechanical performance test and static loading test were performed on the samples composed of diffe... In order to verify the influence of different block proportions S/B on the effect of SBS modified asphalt,the dynamic mechanical performance test and static loading test were performed on the samples composed of different kinds of SBS with base asphalt. It is found that different S/B values fix on different modified effects and different viscoelastic mechanical behaviors,due to biphasic separate fabric of polybutadiene and polystyrene in SBS. In low-speed running pavement,the modified asphalt with lower S/B value shows better pavement performance,while in high-speed running pavement,the modified asphalt with higher S/B value shows better pavement performance. As far as SBS modified asphalt itself is concerned,mixing proportion impacts on resisting displacement and block proportion S/B ratio impacts on strain recovery capacity. In the case that the conditions are the same,SBS modified asphalt with different S/B values can be used for different travelling speed pavement construction demands to get an intelligent use. 展开更多
关键词 SBS modifier block proportion dynamic mechanical test static loading test
在线阅读 下载PDF
Fast determination of meso-level mechanical parameters of PFC models 被引量:4
19
作者 Guo Jianwei Xu Guoan +1 位作者 Jing Hongwen Kuang Tiejun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期157-162,共6页
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test... To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models. 展开更多
关键词 Particle flow code Meso-level mechanical parameter Macroscopic property Orthogonal test Intelligent prediction
在线阅读 下载PDF
Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration:A laboratory test 被引量:3
20
作者 Yan Ma Yi Shi +6 位作者 Deyi Hou Xi Zhang Jiaqi Chen Zhifen Wang Zhu Xu Fasheng Li Xiaoming Du 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期328-335,共8页
Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used ... Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures(silty,clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform(TCM) and trichloroethylene(TCE). Mechanical soil aeration was effective for remediating VCHs(removal efficiency 〉 98%). The volatilization process was described by an exponential kinetic function.In the early stage of treatment(0–7 hr), rapid contaminant volatilization followed a pseudofirst order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8 hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. 展开更多
关键词 Contaminated site Texture of soil profile Particle-size fraction Volatile chlorinated hydrocarbons(VCHs) mechanical soil aeration Treatability test
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部