Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste...Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.展开更多
In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquef...In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations.展开更多
基金Project(2009CK2001) supported by the Science & Technology Development Key Program of Hunan Province STA of ChinaProject supported by the Young Teachers Program of Hunan University,China
文摘Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.
基金Supported by the National Natural Science Foundation of China(E041003)the Fundamental Research Funds for the Central Universities(FRF-TP-15-105A1)the Postdoctoral Science Foundation of China(2015M580049)
文摘In order to present a retrospective analysis of exposition accidents using input data from investigation processes,data from a specific accident was examined,in which we analyzed possible involved gas species( liquefied petroleum gas; nature gas) and computed their concentrations and distributions based on the interactions between the structures and the effects of the explosion. In this study,5 scenarios were created to analyze the impact effect. Moreover,a coupling algorithm was put into practice,with a practical outflow boundary and joint strength are applied. Finally,the damage effects of each scenario were simulated. Our experimental results showed significant differences in the 5 scenarios concerning the damage effects on the building structures. The results from scenario 3 agree with the accident characteristics,demonstrating the effectiveness of our proposed modeling method. Our proposed method reflects gas properties,species and the concentration and distribution,and the simulated results validates the root cause,process,and consequences of accidental explosions. Furthermore,this method describes the evolution process of explosions in different building structures. Significantly,our model demonstrates the quantatative explosion effect of factors like gas species,gas volumes,and distributions of gases on explosion results. In this study,a feasible,effective,and quantitative method for structure safety is defined,which is helpful to accelerate the development of safer site regulations.