期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Mechanical response analysis of asphalt pavement considering top-down crack based on FDM-DEM coupling simulation 被引量:2
1
作者 Min Wang Xin Yu Chen Chen 《Journal of Road Engineering》 2025年第1期92-105,共14页
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di... The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack. 展开更多
关键词 Full-scale pavement structure Top-down crack FDM-DEM coupling model mechanical response
在线阅读 下载PDF
Fault zone mechanical response under co-exploitation of mine and geothermal energy: The combined effect of pore pressure and mining-induced stress 被引量:1
2
作者 Jinghong Yan Dan Ma +2 位作者 Xuefeng Gao Qiang Li Wentao Hou 《International Journal of Coal Science & Technology》 2025年第3期43-66,共24页
As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during min... As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during mining to decrease the min-ing workface temperature while also developing geothermal energy.This method is called the co-exploitation of mine and geothermal energy(CMGE).The geothermal development may precipitate the large-scale failure of the nearby fault zone during the mining process.However,the evolution of shear slide and shear failure of fault under geothermal production/rein-jection during mining is missing.Therefore,a fully-coupled hydraulic mechanism(HM)double-medium model for CMGE was developed based on the measured data of the Chensilou mine.A comparative analysis of the mechanical response of fault between CMGE and single mining was conducted.The disturbance of geothermal production pressure and reinjection pressure under mining on fault stability were respectively expounded.The results indicate that:(1)The disturbance of geo-thermal reinjection amplifies the disturbance of mining on fault stability.The amplified effect resulted in a normal stress drop of the fault,further leading to a substantial increase in shear slide distance,failure area,and cumulative seismic moment of fault compared with the single mining process.(2)As the distance of reinjection well to the fault decreases,the fault failure intensity increases.Setting the production well within the fault is advantageous for controlling fault stability under CMGE.(3)The essence of the combined disturbance of CMGE on the nearby fault is the overlay of tensile stress disturbance on the fault rock mass of the mining and geothermal reinjection.Though the geothermal reinjection causes a minor normal stress drop of fault,it can result in a more serious fault failure under CMGE.This paper supplies a significant gap in understanding thenearby faults failure under CMGE. 展开更多
关键词 Fault zone mechanical response Co-exploitation of coal and geothermal energy HM fully-coupled model Mining-induced stress
在线阅读 下载PDF
Complexions-Dominated Plastic Transmission and Mechanical Response in Cu-Based Nanolayered Composites
3
作者 Zhe Yan Qi An +3 位作者 Lichen Bai Ruifeng Zhang Mingyu Gong Shijian Zheng 《Acta Metallurgica Sinica(English Letters)》 2025年第4期597-613,共17页
Thermodynamically stable and ultra-thin “phase” at the interface, known as complexions, can significantly improve the mechanical properties of nanolayered composites. However, the effect of complexions features (e.g... Thermodynamically stable and ultra-thin “phase” at the interface, known as complexions, can significantly improve the mechanical properties of nanolayered composites. However, the effect of complexions features (e.g., crystalline orientation, crystalline structure and amorphous composition) on the plastic deformation remains inadequately investigated, and the correlation with the plastic transmission and mechanical response has not been fully established. Here, using atomistic simulations, we elucidate the different complexions-dominated plastic transmission and mechanical response. Complexions can alter the preferred slip system of dislocation nucleation, depending on the Schmid factor and interface structure. After nucleation, the dislocation density exhibits an inverse correlation with the stress magnitude, because the number of dislocations influences the initiation of plastic deformation and determines the stress release. For crystalline complexions with different structures and orientations, the ability of dislocation transmission is mainly dependent on the continuity of the slip system. The plastic transmission can easily proceed and exhibits relatively low flow stress when the slip system is well-aligned. In the case of amorphous complexions with different compositions, compositional variations impact the atomic percentage of shear transformation zones after loading, resulting in different magnitudes of plastic deformation. When smaller plastic deformation is produced, less stress can be released contributing to higher flow stress. These findings reveal the role of the complexions on plasticity behavior and provide valuable insights for the design of nanolayered composites. 展开更多
关键词 Atomistic simulations Nanolayered composites Complexions PLASTICITY mechanical response
原文传递
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
4
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 Thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM Dynamic mechanical response
在线阅读 下载PDF
Shear mechanical responses and debonding failure mechanisms of bolt-resin-rock anchoring system under dynamic normal load boundary
5
作者 Xinxin Nie Qian Yin +5 位作者 Zhigang Tao Manchao He Gang Wang Wenhua Zha Zhaobo Li Yajun Ren 《International Journal of Mining Science and Technology》 2025年第9期1603-1625,共23页
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th... Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone. 展开更多
关键词 Anchoring structure Dynamic normal load boundary Shear mechanical responses Debonding failure Discrete element method
在线阅读 下载PDF
Phase prediction and mechanical responses of high-entropy alloys
6
作者 Bin LI Jia-lin SUN +2 位作者 Jun ZHAO Xia-lun YUN Quan-bin DU 《Transactions of Nonferrous Metals Society of China》 2025年第7期2105-2134,共30页
High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional propertie... High-entropy alloys(HEA)are novel materials obtained by introducing chemical disorder through mixing multiple-principal components,performing rather attractive features together with charming and exceptional properties in comparison with traditional alloys.However,the trade-off relationship is still present between strength and ductility in HEAs,significantly limiting the practical and wide application of HEAs.Moreover,the preparation of HEAs by trial-and-error method is time-consuming and resource-wasting,hindering the high-speed and high-quality development of HEAs.Herein,the primary objective of this work is to summarize the latest advancements in HEAs,focusing on methods for predicting phase structures and the factors influencing mechanical properties.Additionally,strengthening and toughening strategies for HEAs are highlighted,thus maximizing their application potential.Besides,challenges and future investigation direction of HEAs are also identified and proposed. 展开更多
关键词 high entropy alloys phase structure prediction mechanical response strengthening and toughening strategy density functional theory
在线阅读 下载PDF
Mechanical Response and Superelastic Properties of Cu-11.85Al-3.2Mn-0.1Ti TPMS Structures Printed by Laser Powder Bed Fusion
7
作者 Mingzhu Dang Honghao Xiang +3 位作者 Jingjing Li Chunsheng Ye Chao Cai Qingsong Wei 《Chinese Journal of Mechanical Engineering》 2025年第1期17-30,共14页
Triply periodic minimal surfaces(TPMS)are structures with smooth surfaces and excellent energy absorption properties.Combining new functional materials,such as shape memory alloys,with TPMS structures provides a novel... Triply periodic minimal surfaces(TPMS)are structures with smooth surfaces and excellent energy absorption properties.Combining new functional materials,such as shape memory alloys,with TPMS structures provides a novel and promising research field.In this study,three TPMS structures(Gyroid,Diamond,and Primitive)of Cu-11.85Al-3.2Mn-0.1Ti alloy were printed by laser powder bed fusion,which is favorable for the fabrication of complex structures.The manufacturing fidelity,mechanical response,and superelastic properties of the three structures were investigated.Stress distributions in the three structures during compression were analyzed by finite element(FE)simulation.The three structures were equipped with high-quality,glossy surfaces and uniform pores.However,due to powder adhesion and forming steps,there were volumetric errors and dimensional deviations between the samples and the CAD models.The errors were within 1.6%for the Gyroid and Diamond structures.The dimensional deviations at the nodes in the three structures were less than 0.09 mm.The microstructures of all structures wereβ1´martensite,consistent with the cubic sample.Experimental results of compression showed that the structures underwent a layer-by-layer compression failure mode,and the Primitive structures exhibited a more pronounced oscillatory process.The Diamond structures showed the highest first fracture stress and strain of 164.67 MPa and 13.89%,respectively.It also possessed the lowest yield strength(61.97 MPa)and the best energy absorption properties(7.6 MJ/m3).Through the deformation analysis,the Gyroid and Diamond structures were found to fracture at a 45°direction,while the Primitive structures fractured horizontally.These findings were consistent with the results obtained from the FE simulation,which showed equivalent stress distributions.After applying various pre-strains,the Diamond structures displayed the highest superelastic strain of up to 3.53%.The superelastic recovery of all samples ranged from 63.5%to 71.5%. 展开更多
关键词 Laser powder bed fusion Shape memory alloy Triply periodic minimal surfaces mechanical response Energy absorption
在线阅读 下载PDF
Mechanical response and impact tendency index correction of gangue-coal combined structure
8
作者 WEN Zhi-jie XU Chang-long +2 位作者 GONG Feng-qiang ZUO Yu-jun SONG Zhen-qi 《Journal of Central South University》 2025年第6期2288-2306,共19页
To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with... To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance. 展开更多
关键词 gangue-coal combined structure mechanical response peak elastic energy density difference impact tendency comprehensive impact instability index
在线阅读 下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns 被引量:2
9
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage mechanical response Thermodynamic response Lined rock caverns
在线阅读 下载PDF
Investigations of the mechanical response of dummy HTPB propellant grain under ultrahigh acceleration overload conditions using onboard flight-test measurements 被引量:1
10
作者 Yiming Zhang Ningfei Wang +3 位作者 Weihua Ma Ran Wang Long Bai Yi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期473-484,共12页
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen... In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process. 展开更多
关键词 Gun-launched flight test Dummy HTPB propellant Onboard measurements Utrahigh overload mechanical response
在线阅读 下载PDF
Simulation of cells mechanical responses during perfusion culture in Voronoi-lattice scaffolds using multiphase FSI model
11
作者 Shanshan Zou He Gong +1 位作者 Jiazi Gao Liming Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第12期40-55,共16页
During perfusion culture,the growth of bone tissues in the scaffold was closely related to the locations of initial adhered cells and their density.In this study,the fluid mechanical responses of Voronoi-lattice scaff... During perfusion culture,the growth of bone tissues in the scaffold was closely related to the locations of initial adhered cells and their density.In this study,the fluid mechanical responses of Voronoi-lattice scaffolds and initial adhered cells on scaffolds were quantitatively investigated.Multiphase fluid-structure interaction(FSI)model was verified by comparing with the results of Diamond scaffolds culture in the literature.Fluid mechanical responses of Voronoi-lattice scaffolds and cells were analyzed by multiphase FSI model.Regression equations were established by response surface method(RSM)to determine relationships between structural design factors of Voronoi-lattice scaffolds and fluid mechanical response parameters of scaffolds and cells.The results showed that the percentage of adhered cells and the locations of initial adhered cells obtained by multiphase FSI model of Diamond scaffolds had the same trend with that obtained by perfusion culture.Regression equations established based on RSM could well predict the fluid mechanical response parameters of Voronoi-scaffolds and cells.The multiphase FSI model closely related the densities of cells and the locations of adhered cells to bone tissue growth.The model could provide a certain theoretical basis for constructing and culturing engineered bone tissues in vitro perfusion. 展开更多
关键词 Voronoi-lattice scaffold Multiphase flow Fluid-structure interaction Cell trajectory mechanical response
原文传递
Influence of the boundary effect on the mechanical response test of pavement cushion under the wetting effect of silt
12
作者 Luo Qiqi Yu Qian +3 位作者 Zhang Sheng Ma Xinyan Ye Xinyu Du Yinfei 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期266-274,共9页
Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the... Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded. 展开更多
关键词 pavement cushion silt subgrade WETTING boundary effect mechanical response
在线阅读 下载PDF
Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole
13
作者 Zhenyu Han Kai Liu +1 位作者 Jinyin Ma Diyuan Li 《International Journal of Coal Science & Technology》 CSCD 2024年第5期16-35,共20页
Caverns and tunnels are constantly exposed to dynamic loads,posing a potentially significant threat to the safety of rock structures.To facilitate the understanding of dynamic fracture around openings,a series of disc... Caverns and tunnels are constantly exposed to dynamic loads,posing a potentially significant threat to the safety of rock structures.To facilitate the understanding of dynamic fracture around openings,a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution.The results indicate that the existence of a hole greatly reduces dynamic strength,and the reduction is closely related to hole shape.The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens.Although crack initiation differs for varying hole shapes,the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen,which are effectively identified by velocity trend arrows and contact force distribution.Finally,comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted. 展开更多
关键词 HOLE Rock dynamics PFC Crack propagation mechanical response
在线阅读 下载PDF
Mechanical response of bridge piles in high-steep slopes and sensitivity study 被引量:14
14
作者 赵衡 尹平保 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4043-4048,共6页
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ... The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part. 展开更多
关键词 BRIDGE mechanical response high-steep slope inclined load power series method
在线阅读 下载PDF
Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading 被引量:8
15
作者 Xiao Liu Hui Yang +3 位作者 Biwu Zhu Yuanzhi Wu Wenhui Liu Changping Tang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期1096-1108,共13页
Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommo... Split Hopkinson pressure bar(SHPB)tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350℃ with strain rates of 2150s-1,3430s^(-1) and 4160s-1.The mechanical response,microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated.The twin and shear band are prevailing at low temperature,and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature,while at high temperature,dynamic recrystallization(DRX)is almost complete.The increment of temperature reduces the critical condition difference between twinning and DRX,and the recrystallized temperature decreases with increasing strain rate.The mechanical response is related to the competition among the shear band strengthen,the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure.The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band.During high-speed deformation,different twin variants,introduced by pre-rolling,induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip.At low temperature,the high-speed deformation is achieved by twinning,dislocation slip and the following deformation shear band at different deformation stages.At high temperature,the high-speed deformation is realized by twinning and dislocation slip of early deformation stage,transition shear band of medium deformation stage and DRX of final deformation stage. 展开更多
关键词 mechanical response Pre-twinning Accommodation mechanism Pre-rolled AZ31 magnesium alloy High-speed impact loading
在线阅读 下载PDF
Mechanical response of transmission lines based on sliding cable element 被引量:4
16
作者 刘云 钱振东 夏开全 《Journal of Central South University》 SCIE EI CAS 2014年第8期3370-3377,共8页
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca... In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions. 展开更多
关键词 transmission lines sliding cable element updated Lagrangian formulation geometric nonlinearity mechanical response
在线阅读 下载PDF
Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils 被引量:3
17
作者 Mengdie NIU Jing XIA +1 位作者 Huadong YONG Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期235-250,共16页
Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,... Quench and mechanical behaviors are critical issues in high temperature superconducting(HTS)coils.In this paper,the quench characteristics in the rare earth barium copper oxide(REBCO)pancake coil at 4.2K are analyzed,and a two-dimensional(2D)axisymmetric electro-magneto-thermal model is presented.The effects of the constituent materials,background field,and coil size are analyzed.An elastoplastic mechanical model is used to study the corresponding mechanical responses during the quench propagation.The variations of the temperature and strain in superconducting layers are compared.The results indicate that the radial strain evolutions can reflect the transverse quench propagation and the tensile hoop and radial stresses in superconducting layers increase with the quench propagation.The possible damages are discussed with the consideration of the effects of the background field and coil size.It is concluded that the high background field significantly increases the maximum tensile hoop and radial stresses in quenching coils and local damage may be caused. 展开更多
关键词 rare earth barium copper oxide(REBCO)pancake coil hoop stress quench characteristic mechanical response radial stress
在线阅读 下载PDF
Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy:A Molecular Dynamics Study 被引量:2
18
作者 Hai-Feng Zhang Hai-Le Yan +1 位作者 Feng Fang Nan Jia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1511-1526,共16页
Mechanical properties of high-entropy alloys(HEAs)with the face-centered cubic(fcc)structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlyin... Mechanical properties of high-entropy alloys(HEAs)with the face-centered cubic(fcc)structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlying plastic fl ow mechanisms of such alloys are not yet well understood.Here,deformation of the equiatomic FeMnCoCrNi HEA with various initial orientations under uniaxial tensile testing has been studied by using atomistic simulations,showing the results consistent with the recent experiments on fcc HEAs.The quantitative analysis of the activated deformation modes shows that the initiation of stacking faults is the main plastic deformation mechanism for the crystals initially oriented with[001],[111],and[112],and the total dislocation densities in these crystals are higher than that with the[110]and[123]orientations.Stacking faults,twinning,and hcp-martensitic transformation jointly promote the plastic deformation of the[110]orientation,and twinning in this crystal is more significant than that with other orientations.Deformation in the crystal oriented with[123]is dominated by the hcp-martensite transformation.Comparison of the mechanical behaviors in the FeMnCoCrNi alloy and the conventional materials,i.e.Cu and Fe50Ni50,has shown that dislocation slip tends to be activated more readily in the HEA.This is attributed to the larger lattice distortion in the HEA than the low-entropy materials,leading to the lower critical stress for dislocation nucleation and elastic–plastic transition in the former.In addition,the FeMnCoCrNi HEA with the larger lattice distortion leads to an enhanced capacity of storing dislocations.However,for the[001]-oriented HEA in which dislocation slip and stacking fault are the dominant deformation mechanisms,the limited deformation modes activated are insu fficient to improve the work hardening ability of the material. 展开更多
关键词 High-entropy alloy Molecular dynamics study mechanical response Plastic deformation mechanism
原文传递
Mechanical Response of Conductor on Round Core(CORC)Cables Under Electromagnetic Force 被引量:2
19
作者 Junfeng Wu Donghui Liu +1 位作者 Xingyi Zhang Huadong Yong 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第3期418-427,共10页
The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the ... The conductor on round core(CORC)cables are fabricated with multilayer high-temperature superconductor tapes,which are helically wound around a circular central former.The large Lorentz force will be generated by the transport current in CORC cables under high magnetic field,which will affect the stress and strain distributions of tapes in the cables and the performance of superconducting tape.This paper establishes a two-dimensional axisymmetric model to analyze the mechanical response of CORC cables subjected to the Lorentz force and analyzes the influence of air gaps on stress and strain distributions inside the cables.The T-A method is used to calculate the distributions of current density,magnetic field and the Lorentz force in CORC cables.The mechanical response of CORC cables is analyzed by applying the Lorentz force as an external load in the mechanical model.The direction of electromagnetic force is analyzed in CORC cables with and without shielding current,and the results show that the shielding current can lead to the concentration of electromagnetic force.The maximum stress and strain occur on both sides of the superconducting tapes in the cables with shielding current.Reducing the size of air gaps can reduce the stress and strain in the superconducting layers.The analysis of mechanical response of CORC cables can play an important role in optimizing the design of CORC cables and improving transmission performance. 展开更多
关键词 CORC cables Electromagnetic force mechanical response Air gaps
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部