期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
1
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Fast determination of meso-level mechanical parameters of PFC models 被引量:4
2
作者 Guo Jianwei Xu Guoan +1 位作者 Jing Hongwen Kuang Tiejun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期157-162,共6页
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test... To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models. 展开更多
关键词 Particle flow code Meso-level mechanical parameter Macroscopic property Orthogonal test Intelligent prediction
在线阅读 下载PDF
基于全局响应面算法的Q235B钢的Johnson-Cook模型参数最优 被引量:1
3
作者 苏绍娟 武玉杰 +4 位作者 王国回 苗哲 熊野萍 郭方昕 刘海波 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期470-478,共9页
This study investigates the mechanical properties of Q235B steel through quasi-static tests at both room temperature and elevated temperature.The initial values of the Johnson-Cook model parameters are determined usin... This study investigates the mechanical properties of Q235B steel through quasi-static tests at both room temperature and elevated temperature.The initial values of the Johnson-Cook model parameters are determined using a fitting method.The global response surface algorithm is employed to optimize and calibrate the Johnson-Cook model parameters for Q235B steel under both room temperature and elevated temperature conditions.A simulation model is established at room temperature,and the simulated mechanical performance curves for displacement and stress are monitored.Multiple optimization algorithms are applied to optimize and calibrate the model parameters at room temperature.The global response surface algorithm is identified as the most suitable algorithm for this optimization problem.Sensitivity analysis is conducted to explore the impact of model parameters on the objective function.The analysis indicates that the optimized material model better fits the experimental values,aligning more closely with the actual test results of material strain mechanisms over a wide temperature range. 展开更多
关键词 Q235B mechanical property test Numerical simulation Johnson cook model Global response surface algorithm
在线阅读 下载PDF
Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber reinforced polymer composite bar 被引量:1
4
作者 Chao WU Xiongjun HE +2 位作者 Li HE Jing ZHANG Jiang WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期834-850,共17页
The concept of steel sheet glass fiber reinforced polymer(GFRP)composite bar(SSGCB)was put forward.An optimization plan was proposed in the combined form of SSGCB.The composite principle,material selection,and SSGCB p... The concept of steel sheet glass fiber reinforced polymer(GFRP)composite bar(SSGCB)was put forward.An optimization plan was proposed in the combined form of SSGCB.The composite principle,material selection,and SSGCB preparation technology have been described in detail.Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties.Mechanical tests such as uniaxial tensile,shear,and compressive tests were carried out on SSGCB.Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB.The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content.Shear strength was also increased with the addition of steel content.Furthermore,the yield state of SSGCB was similar to the steel bar,both of which indicated a multi-stage yield phenomenon.The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content.Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars. 展开更多
关键词 steel sheet GFRP composite bar combination form numerical modeling mechanical properties test strength
原文传递
Enhancing mechanical and corrosion performance of TiN PVD-coated tool steels through PAN pre-treatment
5
作者 M.Dadfar H.R.Khandan Pour T.Sanvito 《Surface Science and Technology》 2023年第1期398-406,共9页
Mechanical properties of plasma-assisted nitrided(PAN),TiN cathodic arc coated,and PAN with TiN coated samples were thoroughly evaluated on tool steel samples of 1.2379.The evaluation involved SEM,nano-indentation,pro... Mechanical properties of plasma-assisted nitrided(PAN),TiN cathodic arc coated,and PAN with TiN coated samples were thoroughly evaluated on tool steel samples of 1.2379.The evaluation involved SEM,nano-indentation,profilometer,micro scratch,and corrosion tests.The results revealed that PAN treatment alters the roughness of the surface,while it has minimal impact on the coefficient of friction.However,it increases the substrate’s hardness,making it twice as hard and three times more resilient against scratch tests,along with improved corrosion resistance.TiNcoated samples are four times harder than untreated ones,but they exhibit a higher elastic modulus(E),leading to a lower H/E index.The most promising results were obtained with PAN+TiN treatment,combining high hardness(H)with lower E,resulting in a high H/E index,a crucial criterion for wear resistance.These samples also demonstrated superior scratch hardness and corrosion resistance,despite being thinner and rougher. 展开更多
关键词 NITRIDING Physical Vapour Deposition(PVD) mechanical properties testing Corrosion Scratch hardness
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部