Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence sem...Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence semantic dependencies.A robust entity extraction method tailored for accident texts is proposed.Design/methodology/approach–This method is implemented through a dual-branch multi-task mutual learning model named R-MLP,which jointly performs entity recognition and accident phase classification.The model leverages a shared BERT encoder to extract contextual features and incorporates a sentence span indexing module to align feature granularity.A cross-task mutual learning mechanism is also introduced to strengthen semantic representation.Findings–R-MLP effectively mitigates the impact of semantic complexity and data sparsity in domain entities and enhances the model’s ability to capture inter-sentence semantic dependencies.Experimental results show that R-MLP achieves a maximum F1-score of 0.736 in extracting six types of key railway accident entities,significantly outperforming baseline models such as RoBERTa and MacBERT.Originality/value–This demonstrates the proposed method’s superior generalization and accuracy in domainspecific entity extraction tasks,confirming its effectiveness and practical value.展开更多
Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int...Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.展开更多
基金funded by the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the Foundation of China Academy of Railway Sciences Co.,Ltd.(No:2024YJ259).
文摘Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence semantic dependencies.A robust entity extraction method tailored for accident texts is proposed.Design/methodology/approach–This method is implemented through a dual-branch multi-task mutual learning model named R-MLP,which jointly performs entity recognition and accident phase classification.The model leverages a shared BERT encoder to extract contextual features and incorporates a sentence span indexing module to align feature granularity.A cross-task mutual learning mechanism is also introduced to strengthen semantic representation.Findings–R-MLP effectively mitigates the impact of semantic complexity and data sparsity in domain entities and enhances the model’s ability to capture inter-sentence semantic dependencies.Experimental results show that R-MLP achieves a maximum F1-score of 0.736 in extracting six types of key railway accident entities,significantly outperforming baseline models such as RoBERTa and MacBERT.Originality/value–This demonstrates the proposed method’s superior generalization and accuracy in domainspecific entity extraction tasks,confirming its effectiveness and practical value.
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(YWF-22-L-1203)the National Natural Science Foundation of China(62173013,62073005)+1 种基金the National Key Research and Development Program of China(2020YFB1712203)U.S.National Science Foundation(CCF-0939370,CCF-1908308).
文摘Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.