期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Mechanical properties and microstructure evolution of 1800 MPa grade low alloy ultrahigh strength steel during quenching and tempering process 被引量:1
1
作者 Tong Wang Yang-xin Wang +2 位作者 Chun-dong Hu Peng-min Cao Han Dong 《Journal of Iron and Steel Research International》 2025年第6期1691-1700,共10页
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci... The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control. 展开更多
关键词 STRENGTH TOUGHNESS CARBIDE Microstructure evolution mechanism
原文传递
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method 被引量:3
2
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
在线阅读 下载PDF
Microstructure Evolution and Mechanical Properties of HR3C Steel during Long-term Aging at High Temperature 被引量:16
3
作者 Bin WANG Zheng-dong LIU +2 位作者 Shi-chang CHENG Chun-ming LIU Jing-zhong WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期765-773,共9页
Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase a... Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase and a trace amount of Nb(C,N).The M23C6 carbides were distributed mainly at the grain boundary,while Z-phase was mainly inside the grains.Amounts of both M23C6 carbides and Z-phase during the aging process increased with increasing aging period and temperature.Coarsening of M23C6 carbides was influenced significantly by aging time and temperature,while the size of the Z-phase was relatively less affected by the aging time and temperature,which had a steady strengthening effect.Coarsening of the M23C6 carbides was the main reason for the decline in high temperature yield strength during long-term aging at 750℃.The M23C6 carbides were linked into a continuous chain along the grain boundary which accounted for the decrease of toughness during aging. 展开更多
关键词 HR3C steels microstructure evolutions mechanical propertys aging
原文传递
Mechanical and damage evolution properties of sandstone under triaxial compression 被引量:16
4
作者 Zong Yijiang Han Lijun +1 位作者 Wei Jianjun Wen Shengyong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期601-607,共7页
To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and charac... To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process. 展开更多
关键词 Rock mechanics mechanical properties Dilatation Damage evolution Failure characteristics
在线阅读 下载PDF
Evolution of Microstructure and Mechanical Property during Long-Term Aging in Udimet 720Li 被引量:6
5
作者 Lanzhang ZHOU and Valentino LUPINC CNR-TeMPE, Via R. Cozzi 53, 20125 Milano, Italy Jianting GUO Institute of Metal Research, CAS, 72 Wenhua Road, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期633-637,共5页
Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that,... Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that, the primary and secondary gamma' particles maintain good thermal stability at 650 and 700 degreesC with aging time up to 3000 h, while the tertiary gamma' is apparently dependent on aging temperature and time. The tertiary gamma' particles undergo a procedure of coarsening, dissolution and eventually complete disappearance with the increasing of aging time and temperature. They exhibit unusual high sensibility upon aging temperature, which is attributed to the lattice misfit between the gamma' precipitates and the matrix in the alloy. The grain boundary phase M23C6 remains stable without forming of sigma phase even with aging time up to 3000 h at 700 degreesC. Microhardness decreases apparently with increasing aging time and aging temperature. Theoretical analysis based on dislocation mechanism indicates that the change of microhardness should be attributed to the evolution of the tertiary gamma' during aging. 展开更多
关键词 evolution of Microstructure and mechanical Property during Long-Term Aging in Udimet 720Li LONG
在线阅读 下载PDF
Mechanically Driven Alloying and Structural Evolution of Nanocrystalline Fe_(60)Cu_(40) Powder 被引量:1
6
作者 Yuanda DONG and Xueming MA(School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)Yuanzheng YANG(Dept. of Mechanical Engineering(2), South China University of Technology, Guangzhou 510641, China)Fangxin LIU and Genmiao WA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期354-358,共5页
Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten... Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe 展开更多
关键词 mechanically Driven Alloying and Structural evolution of Nanocrystalline Fe MA CU POWDER Figure
在线阅读 下载PDF
Structural Evolution of Fullerene during Mechanical Milling
7
作者 Z. G.Liu H. Ohi K. Tsuchiya and M. Umemoto(Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho,Toyohashi 441-8580, Japan To whom correspondence should be addressedE-mail: liuzg@umelab-61.tutpse.tut.ac.jp) K.Mas 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第5期405-409,共5页
Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc... Mechanical milling of fullerene (C60(C70)) was investigated to understand the structural evolu-tion. Mechanical milling could not destroy the molecular structure of C60(C70), while the longrange periodicity of the fCc crystalline structure was easiIy damaged. Longer miIIing time couldresult in the formation of C60(C70) polymer, including C60 dimer. 展开更多
关键词 FIGURE Structural evolution of Fullerene during mechanical Milling WANG
在线阅读 下载PDF
Effects of Strain Rate,Temperature and Grain Size on the Mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires:A Molecular Dynamics Simulation
8
作者 RUAN Zhigang WU Wenping LI Nanlin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期251-258,共8页
Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to... Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire. 展开更多
关键词 Effects of Strain Rate Temperature and Grain Size on the mechanical Properties and Microstructure evolutions of Polycrystalline Nickel Nanowires A Molecular Dynamics Simulation
原文传递
Unveiling complexities:Reviews on insights into the mechanism of oxygen evolution reaction
9
作者 Pengxiang Zhang Jiawen Wang +7 位作者 Tianyu Yang Ruizhe Wang Ruofan Shen Zhikun Peng Yanyan Liu Xianli Wu Jianchun Jiang Baojun Li 《Chinese Journal of Catalysis》 2025年第5期48-83,共36页
The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the ... The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development. 展开更多
关键词 Oxygen evolution reaction Catalytic mechanism Catalyst design Adsorption evolution mechanism Lattice oxygen mechanism
在线阅读 下载PDF
Evolution and triggering mechanism of fault-slip rockbursts in deep tunnels:Insights from 3D printed large-scale physical models
10
作者 Shi-Ming Mei Xia-Ting Feng +3 位作者 Zheng-Wei Li Ben-Guo He Cheng-Xiang Yang Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6821-6836,共16页
The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in so... The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts. 展开更多
关键词 Fault-slip rockbursts evolution mechanism 3D printing Large-scale physical model test Deep tunnel
在线阅读 下载PDF
Brittleness evaluation of gas-bearing coal based on statistical damage constitution model and energy evolution mechanism
11
作者 XUE Yi WANG Lin-chao +5 位作者 LIU Yong RANJITH P G CAO Zheng-zheng SHI Xu-yang GAO Feng KONG Hai-ling 《Journal of Central South University》 2025年第2期566-581,共16页
Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a ... Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions. 展开更多
关键词 gas pressure statistical damage constitutive model energy evolution mechanism brittleness evaluation gas bearing coal
在线阅读 下载PDF
Iridium-based electrocatalysts for acidic oxygen evolution reaction
12
作者 Yanhui Yu Gai Li +10 位作者 Yutong Xiao Chi Chen Yuhang Bai Tianjiao Wang Jing Li Yingjie Hua Daoxiong Wu Peng Rao Peilin Deng Xinlong Tian Yuliang Yuan 《Journal of Energy Chemistry》 2025年第4期200-224,共25页
Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong... Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented. 展开更多
关键词 ELECTROLYSIS Water splitting Oxygen evolution reaction Ir-based catalysts Oxygen evolution reaction mechanisms
在线阅读 下载PDF
Dual-shell hollow nanospheres NiCo_(2)S_(4)@CoS_(2)/MoS_(2): Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption- desorption and lattice oxygen oxidation
13
作者 Yang Chen Yu Tang +4 位作者 Leiyun Han Jiayan Liu Yingjie Hua Xudong Zhao Xiaoyang Liu 《Chinese Journal of Catalysis》 2025年第7期394-410,共17页
Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as se... Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures. 展开更多
关键词 Adsorbate evolution mechanism Lattice oxygen mechanism WATER-SPLITTING ZIF-67 NiCo_(2)S_(4)@CoS_(2)/MoS_(2) Dual-shell hollow nanospheres
在线阅读 下载PDF
Microstructure and evolution of(TiB_2+Al_2O_3)/NiAl composites prepared by self-propagation high-temperature synthesis 被引量:3
14
作者 宋晓杰 崔洪芝 +1 位作者 曹丽丽 P.Y.GULYAEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1878-1884,共7页
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with... (TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix. 展开更多
关键词 (TiB2+Al2O3)/NiAl composites self-propagation high-temperature synthesis MICROSTRUCTURE evolution mechanism
在线阅读 下载PDF
Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression 被引量:27
15
作者 LI Peng CAI Mei-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1857-1874,共18页
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and... The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively. 展开更多
关键词 energy evolution mechanism failure criteria jointed rock mass cross joint uniaxial compression
在线阅读 下载PDF
Floor stress evolution laws and its effect on stability of floor roadway 被引量:20
16
作者 Zhang Hualei Cao Jianjun Tu Min 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期631-636,共6页
According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.... According to the distribution of abutment stress in a stope,this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infnite plate body in elasticity.This study takes the 762 working face of Haizi Coal Mine as a case in point,and analyzed the dynamic evolution law of seam floor stress during the mining process.With an organic combination of the mining floor stress and surrounding rock stress,the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face.Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock,the research built the mechanical model of roadway stress.Simulation results verify the reliability of the above conclusions.Moreover,this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock. 展开更多
关键词 FLOOR Mining abutment pressure Floor roadway Cracks evolution mechanisms
在线阅读 下载PDF
A novel approach of testability modeling and analysis for PHM systems based on failure evolution mechanism 被引量:16
17
作者 Tan Xiaodong Qiu Jing +3 位作者 Liu Guanjun Lv Kehong Yang Shuming Wang Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期766-776,共11页
Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design... Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance. 展开更多
关键词 Design for testability Failure evolution mechanism Failure-symptom dependency Prognostics and health management Symptom-test dependency Testability modeling and analysis Unit under test
原文传递
Evolution of rheocast microstructure of AZ31 alloy in semisolid state 被引量:7
18
作者 Xing Bo Li Yuandong +2 位作者 Ma Ying Chen Tijun Hao Yuan 《China Foundry》 SCIE CAS 2013年第4期221-226,共6页
Semisolid rheoforming (SSR) is a promising technology for the production of Mg wrought alloy in foundry settings. In order to realize SSR, it is necessary to characterize the grain structure evolution during slurry ... Semisolid rheoforming (SSR) is a promising technology for the production of Mg wrought alloy in foundry settings. In order to realize SSR, it is necessary to characterize the grain structure evolution during slurry preparation. In this paper, slurry of AZ31 alloy was produced by a novel rheocast process known as self-inoculation method (SIM). Interrupted quenching technology was applied to investigate the primary a-Mg evolution during continuous cooling and isothermal holding. Results indicate that the initial microstructure of slurry produced by SIM is a mixture of irregular grains, which becomes ideally globular when the slurry slowly cools to 620 ~C and isothermally held for at least 30 s. The local solute diffusion leads to dendritic fragmentation and forms separated particles. During prolonged holding, the particle surface gradually becomes smooth because of protuberance melting and groove advancement. Coarsening of a-Mg grains in isothermal holding was analyzed using Lifshitz-Slyozov-Wagner theory. Results suggest that coalescence is most likely the dominant coarsening mechanism in the early stage while Ostwald ripening tends to be the principal one later. The EDS results indicate that a longer holding time leads to AI solute element segregation at the grain boundaries, but Zn distribution within liquid matrix has no obvious change. 展开更多
关键词 rheocast microstructure evolution mechanism AZ31 alloy quiescent state
在线阅读 下载PDF
Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel 被引量:5
19
作者 Chen Wang Wei Tang +4 位作者 Jiang-shan Zhang Jun-xiong Huang Kun-rui Shen Jun Chen Qing Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第9期1755-1768,共14页
The laboratory experiments,thermodynamic analysis,dynamic analysis,and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA sprin... The laboratory experiments,thermodynamic analysis,dynamic analysis,and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA spring steel.The reduction in basicity and Al_(2)O_(3) content in refining slag can reduce the[Al]s content in the molten steel,which is conducive to the control of the low melting point of inclusions.However,the refining slag with excessively low basicity transfers the oxygen element to molten steel and increases the Al_(2)O_(3) content in inclusions,which is harmful to the control of inclusions.According to the chemical compositions of inclusions and refining slag in laboratory experiments,their physical parameters were calculated.The maximum separation ratio and the moving time of inclusions to reach the maximum separation ratio(t_(max))of inclusions under different laboratory experimental conditions were studied.The maximum separation ratio of inclusions is positively correlated with the overall wettability(coshIMS)among the slag,steel,and inclusions.The maximum separation ratio of inclusions obtained by laboratory experiments is between 85%and 91%.The t_(max) decreases with the decline in basicity and Al_(2)O_(3) content of refining slag,but excessively low basicity will increase the t_(max).The basicity of refining slag in the range of 0.88–0.97 and the content of Al_(2)O_(3) less than 6%is not only conducive to reducing the content of Al_(2)O_(3) and the melting point of inclusions but also beneficial to removing the inclusions to the slag.The slag system shows good metallurgical results in industrial trials. 展开更多
关键词 Thermodynamic analysis Dynamic analysis Oxide inclusion evolution mechanism Removal ratio Overall wettability
原文传递
Experimental investigation on the energy evolution of dry and water-saturated red sandstones 被引量:33
20
作者 Zhang Zhizhen Gao Feng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期383-388,共6页
In order to investigate the effect of water content on the energy evolution of red sandstone, the axial loading–unloading experiments on dry and water-saturated sandstone samples were conducted, and the distribution ... In order to investigate the effect of water content on the energy evolution of red sandstone, the axial loading–unloading experiments on dry and water-saturated sandstone samples were conducted, and the distribution and evolution of elastic energy and dissipated energy within the rock were measured.The results show that the saturation process from dry to fully-saturated states reduces the strength, rigidity and brittleness of the rock by 30.2%, 25.5% and 16.7%, respectively. The water-saturated sample has larger irreversible deformation in the pre-peak stage and smaller stress drop in the post-peak stage.The saturation process decreases the accumulation energy limit by 38.9%, but increases the dissipated energy and residual elastic energy density, thus greatly reducing the magnitude and rate of energy release. The water-saturated sample has lower conversion efficiency to elastic energy by 3% in the prepeak region; moreover, the elastic energy ratio falls with a smaller range in the post-peak stage.Therefore, saturation process can greatly reduce the risk of dynamic disaster, and heterogeneous water content can lead to dynamic disaster possibly on the other hand. 展开更多
关键词 Rock mechanics Energy evolution Energy distribution Triaxial compression Saturation process
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部