期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
Editorial: Special subject on the mechanical behavior of fire dynamics in high-rise buildings
1
作者 Jinhua Sun Longhua Hu 《Theoretical & Applied Mechanics Letters》 CAS 2014年第3期61-62,共2页
With rapid economic and social development in China, high-rise buildings have continuously sprung up since 2006. However, several big fire accidents in high-rise buildings such as the Beijing Television Cultural Cente... With rapid economic and social development in China, high-rise buildings have continuously sprung up since 2006. However, several big fire accidents in high-rise buildings such as the Beijing Television Cultural Center fire in 2009 and the Shanghai Jing'an District fire in 2010 etc. have claimed people's lives and caused huge amounts of economic and property losses, 展开更多
关键词 HIGH EDITORIAL Special subject on the mechanical behavior of fire dynamics in high-rise buildings
在线阅读 下载PDF
Effects of Strain Rate,Temperature and Grain Size on the Mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires:A Molecular Dynamics Simulation
2
作者 RUAN Zhigang WU Wenping LI Nanlin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期251-258,共8页
Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to... Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire. 展开更多
关键词 Effects of Strain Rate Temperature and Grain Size on the mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires A Molecular dynamics Simulation
原文传递
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
3
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 Thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM Dynamic mechanical response
在线阅读 下载PDF
A Study on the Genetic Dynamics and Development Characteristics of Granitic Rock Avalanches in the Northern Qinling Mountains,China
4
作者 Yan Lyu Ruixia Ma +2 位作者 Zuopeng Wang Jianbing Peng Tianzhuo Gu 《Journal of Earth Science》 2025年第2期737-749,共13页
Massive granitic rock avalanches are extensively developed in the middle section of the northern Qinling Mountains(NQM),China.The current consensus is that their formation could have been connected with seismic events... Massive granitic rock avalanches are extensively developed in the middle section of the northern Qinling Mountains(NQM),China.The current consensus is that their formation could have been connected with seismic events that occurred in the NQM.However,there is a lack of systematic discussion on the genetic dynamics of these rock avalanches.Hence,taking Earth system scientific research as a starting point,this paper systematically summarizes and discusses development characteristics,formation times and genetic dynamic mechanisms of granitic rock avalanches in the NQM based on geological investigations,high-precision remote sensing interpretations,geomorphological dating,geophysical exploration,and a large-scale shaking table model test.We identified 53 granitic rock avalanches in this area,with a single collapse area ranging from 0.01×10~6 to 1.71×10~6 m^(2).Their development time can be divided into six stages,namely,107000 years BP,11870–11950 years BP,11000 years BP,2300 years BP,1800 years BP,and 1500 years BP,which were closely related to multiple prehistoric or ancient earthquakes.We suggest that long-term coupling of internal and external earth dynamics was responsible for the granitic rock avalanches in the NQM;the internal dynamics were mainly related to subduction,collision and extrusion of different plates under the Qinling terrane,leading to the formation and tectonic uplift of the Qinling orogenic belt;and the external dynamics were closely associated with climate changes resulting in mountain denudation,freeze-thaw cycles and isostatic balance uplift.In this process,the formation and evolution of the Qinling orogenic belt play a geohazard-pregnant role,structural planes,including faults and joints,play a geohazard-controlled role,and earthquakes play a geohazard-induced role,which jointly results in the occurrence of large-scale granitic rock avalanches in the NQM.This research can not only decipher the genetic dynamic mechanism of large hard granitic rock avalanches but also reveal temporal and spatial patterns of the evolution of breeding and the generation of large-scale rock avalanches in the margins of orogenic belts. 展开更多
关键词 granitic rock avalanche genetic dynamic mechanism earth system science Qinling Mountains PETROLOGY
原文传递
Thermophysical-mechanical behaviors of hot dry granite subjected to thermal shock cycles and dynamic loadings
5
作者 Ju Wang Feng Dai +2 位作者 Yi Liu Hao Tan Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5437-5452,共16页
Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a ser... Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a series of dynamic compression tests were conducted on granite treated by cyclic thermal shocks at different temperatures.We analyzed the effects of cyclic thermal shock on the thermal-related physical and dynamic mechanical behaviors of granite.Specifically,the P-wave velocity,dynamic strength,and elastic modulus of the tested granite decrease with increasing temperature and cycle number,while porosity and peak strain increase.The degradation law of dynamic mechanical properties could be described by a cubic polynomial.Cyclic thermal shock promotes shear cracks propagation,causing dynamic failure mode of granite to transition from splitting to tensile-shear composite failure,accompanied by surface spalling and debris splashing.Moreover,the thermal shock damage evolution and coupled failure mechanism of tested granite are discussed.The evolution of thermal shock damage with thermal shock cycle numbers shows an obvious S-shaped surface,featured by an exponential correlation with dynamic mechanical parameters.In addition,with increasing thermal shock temperature and cycles,granite mineral species barely change,but the length and width of thermal cracks increase significantly.The non-uniform expansion of minerals,thermal shock-induced cracking,and water-rock interaction are primary factors for deteriorating dynamic mechanical properties of granite under cyclic thermal shock. 展开更多
关键词 Geothermal exploitation Cyclic thermal shock GRANITE Thermal-related physical properties Dynamic mechanical behavior Failure mechanism
在线阅读 下载PDF
Experimental and Numerical Analyses of the Dynamic Mechanical Properties of Hull Plate-Frame Structures Under Drop Weight Impacted Load
6
作者 ZONG Shuai LIU Kun +3 位作者 LU Yue HUANG Tian-bo LIU He-wei QIU Wei-jian 《China Ocean Engineering》 2025年第1期27-42,共16页
Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame ... Experimental studies were conducted on two high-strength steel plate-frame structures with different truss spacings under various impact velocities to investigate the dynamic mechanical properties of hull plate-frame structures under drop weight impact.The results showed that decreasing the main beam spacing can effectively increase the structural stiffness,reduce the maximum deformation,and increase the damage range.Furthermore,to simulate the impact tests accurately,static and dynamic tensile tests at different strain rates were carried out,and the Cowper-Symonds model parameters were fitted via experimental data.The material properties obtained from the tensile tests were used as inputs for numerical simulations with the numerical results coincide with the experimental results.A systematic analysis and discussion were conducted on the effects of truss spacing and truss width on the dynamic response of the reinforced plates,and an optimal range for the ratio of truss spacing to truss width was proposed.In addition,a mesh size sensitivity analysis for ship hull plate frame collision simulations was performed.The applicability of the EPS,MMC,and RTCL failure criteria in the simulation of plate-frame structures was investigated via finite element simulations of falling weight impact tests.The research findings provide a reference for ship hull structure design and resilience assessment. 展开更多
关键词 ship collision hull plate-frame structure dynamic mechanical property collision model test numerical simulation
在线阅读 下载PDF
Dynamic Mechanical Behavior and Failure Characteristics of Sandstone Subjected to Freeze-thaw Treatment at Different Strain Rates
7
作者 ZHANG Chunyang TAN Tao +1 位作者 LI Xiaoshuang ZHANG Yuchao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1262-1274,共13页
The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results disp... The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results displayed that the FT damage process of samples can be divided into three stages based on the changes in weight,porosity,and P-wave velocity.The dynamic peak strength,dynamic elastic modulus,and strength ratio decreased with increasing FT cycles,and increased with increasing average strain rate.Moreover,the average strain rate reduced the influence of FT cycles on dynamic peak strength.In general,the incident energy,reflected energy and dissipated energy increased with increasing average strain rate,the transmitted energy was negligibly affected by the average strain rate,and the energy dissipation ratio decreased with increasing average strain rate.In addition,the influence of FT cycles on each type of energy and energy dissipation ratio during sample failure was smaller than that of average strain rate.The average size of fragments can accurately demonstrate the impact of FT damage and average strain rate on dynamic peak strength and failure mode,and quantitatively evaluate the sample’s fragmentation degree.Fractal dimension varies with FT cycles and average strain rate,and the threshold is between 148.30 and 242.57 s^(-1).If the average strain rate is in the threshold range,the relationship between the fractal dimension and dynamic peak strength is more regular,otherwise,it will become complicated.The results reveal the dynamic failure mechanism of white sandstone samples,providing assistance for dynamic rock-breaking and disaster prevention in cold regions. 展开更多
关键词 white sandstone FT cycles dynamic impact tests dynamic mechanical characteristics energy conversion fractal dimension of fragments
原文传递
Mechanical Behavior of Concrete Lintel-column Joint in Chinese Traditional Style Buildings Under Dynamic Cyclic Loading
8
作者 LIU Haipeng DU Luyi +1 位作者 LI Xiang DONG Jinshuang 《International Journal of Plant Engineering and Management》 2025年第3期129-145,共17页
In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displace... In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displacement hysteretic loops,load carrying capacity,degradation of strength and stiffness,ductility and energy dissipation of the joints were analyzed.The results indicate that comparies with the lintel-column joints,the loading capacity and energy dissipation of the concrete archaized buildings with dual lintel-column joints are higher,and the hysteretic loops is in plump-shape.However,the displacement ductility coefficient is less than that of lintel-column joints.Both of them of the regularity of rigidity degeneration are basically the same.Generally,the joints have the good energy dissipation capacity.And the concrete archaized buildings with lintel-column joints exhibit excellent seismic behavior. 展开更多
关键词 chinese traditional style buildings dual-lintel-column joint dynamic cyclic loading mechanical behavior
在线阅读 下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:31
9
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
在线阅读 下载PDF
Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy 被引量:12
10
作者 刘文辉 何圳涛 +1 位作者 陈宇强 唐思文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2179-2186,共8页
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil... To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance. 展开更多
关键词 2519A aluminum alloy dynamic mechanical properties Johnson-Cook model MICROSTRUCTURE
在线阅读 下载PDF
Mechanical response of roof rock mass unloading during continuous mining process in underground mine 被引量:9
11
作者 胡建华 雷涛 +2 位作者 周科平 罗先伟 杨念哥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2727-2733,共7页
Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method ... Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps 展开更多
关键词 continuous mining mining-unload rock mass mechanics mining-unload disturbance region dynamic mechanical parameters
在线阅读 下载PDF
Static and dynamic mechanical behaviour of ECO-RPC 被引量:2
12
作者 赖建中 孙伟 +1 位作者 林玮 金祖权 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期197-202,共6页
Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen... Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates. 展开更多
关键词 ecological reactive powder concrete (ECO-RPC) industrial waste powder interfacial bond strength fracture energy static and dynamic mechanical behaviour high strainrate
在线阅读 下载PDF
MODIFIED CLOSED-FORM NUMERICAL ALGORITHM FOR PERIODIC VIBRATION RESPONSE OF MECHANICAL TRANSMISSIONS 被引量:1
13
作者 YangJianming ZhangCe 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期83-86,共4页
A closed-form numerical algorithm (CFNA) is analyzed in detail. CFNA iswidely used in mechanical dynamics for periodic solution of second-order original differentialequations (SODE) with periodic time-variant coeffici... A closed-form numerical algorithm (CFNA) is analyzed in detail. CFNA iswidely used in mechanical dynamics for periodic solution of second-order original differentialequations (SODE) with periodic time-variant coefficients. The principle of the algorithm is todiscretize the motion period into many short time intervals, so the coefficient matrices of theequation set are regarded as constant in a time interval. Defects are found in the originalalgorithm in treating the modal coordinates at the two end-nodes and important modifications to thedefects is made for the algorithm. The modified algorithm is finally used to solve the dynamicproblem of a three-ring planetary gear transmission. 展开更多
关键词 Closed-form numerical algorithm mechanical dynamics Original differentialequations
在线阅读 下载PDF
Formability of AA 2219-O sheet under quasi-static,electromagnetic dynamic,and mechanical dynamic tensile loadings 被引量:20
14
作者 Hongliang Su Liang Huang +5 位作者 Jianjun Li Wang Xiao Hui Zhu Fei Feng Hongwei Li Siliang Yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期125-135,共11页
The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanis... The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanisms were qualitatively categorized and illustrated.This was realized by comparing the formability of fully annealed 2219 aluminum alloy(AA 2219-O)sheet under quasi-static(QS),electromagnetic dynamic(EM),and mechanical dynamic(MD)tensile loadings.It was found that the forming limit of AA 2219-O sheet under EM tensile loading was significantly(45.4%)higher than that under QS tensile loading,and was marginally(3.7%–4.3%)higher than that under MD tensile loading.In addition,the forming limit of AA 2219-O sheet demonstrated a negative dependency on the strain rate within the range of the dynamic tensile tests conducted.The deformation conditions common to EM and MD tensile loadings were responsible for the significant formability improvement compared with QS tensile loading.In particular,the inertial effect was dominant.The different deformation conditions that distinguish EM tensile loading from MD tensile loading resulted in the marginal improvement in formability.This was caused by the absence of a sustaining contact force at the later deformation stage and the lower strain rate.The body force exerted little influence on the formability improvement,and the thermal effect under the two dynamic tensile loadings was negligible. 展开更多
关键词 FORMABILITY Aluminum alloy sheet QUASI-STATIC Electromagnetic dynamic mechanical dynamic Tensile loading
原文传递
Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling 被引量:18
15
作者 Hao Wang Ximin Deng +3 位作者 Haijun Wu Aiguo Pi Jinzhu Li Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期875-884,共10页
Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea... Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates. 展开更多
关键词 POLYUREA Strain rate effect Dynamic mechanical properties Constitutive model
在线阅读 下载PDF
Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates 被引量:24
16
作者 Yun-hai ZHANG Xin-min WANG +1 位作者 Chong WEI Qin-li ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1608-1617,共10页
To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy... To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively. 展开更多
关键词 layered backfill specimen (LBS) split Hopkinson pressure bar (SHPB) dynamic mechanical properties damage characteristic failure criterion
在线阅读 下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:17
17
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
在线阅读 下载PDF
Combined effects of temperature and axial pressure on dynamic mechanical properties of granite 被引量:10
18
作者 Tu-bing YIN Rong-hua SHU +2 位作者 Xi-bing LI Pin WANG Long-jun DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2209-2219,共11页
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ... In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases. 展开更多
关键词 rock dynamics split Hopkincon pressure bar temperature pressure coupling dynamic mechanical properties
在线阅读 下载PDF
Tectonic Evolution and Dynamics of Deepwater Area of Pearl River Mouth Basin, Northern South China Sea 被引量:13
19
作者 董冬冬 张功成 +2 位作者 钟锴 袁圣强 吴时国 《Journal of China University of Geosciences》 SCIE CSCD 2009年第1期147-159,共13页
Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensio... Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (白云) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (~50-40 Ma), rift-drift transition (~40-32 Ma), early post-breakup (~32-23 Ma), thermal subsidence (~23-5.3 Ma) and neotectonic movement (~5.3-0 Ma). 展开更多
关键词 Pearl River Mouth basin South China Sea tectonic evolution dynamic mechanism stretching factor.
原文传递
Effect of Gd content on microstructure and dynamic mechanical properties of solution-treated Mg−xGd−3Y−0.5Zr alloy 被引量:15
20
作者 Xue-zhao WANG You-qiang WANG +3 位作者 Chen-bing NI Yu-xin FANG Xiao YU Ping ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2177-2189,共13页
The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron... The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron microscopy and split Hopkinson pressure bar.The microstructure of as-cast Mg−xGd−3Y−0.5Zr alloys indicates that the addition of Gd can promote grain refinement in the casting.Due to the rapid cooling rate during solidification,a large amount of non-equilibrium eutectic phase Mg_(24)(Gd,Y)_(5) appears at the grain boundary of as-cast Mg−xGd−3Y−0.5Zr alloys.After solution treatment at 520℃ for 6 h,the Mg_(24)(Gd,Y)_(5) phase dissolves into the matrix,and the rare earth hydrides(REH)phase appears.The stress−strain curves validate that the solution-treated Mg−xGd−3Y−0.5Zr alloys with optimal Gd contents maintain excellent dynamic properties at different strain rates.It was concluded that the variation of Gd content and the agglomeration of residual REH particles and dynamically precipitated fine particles are key factors affecting dynamic mechanical properties of Mg−xGd−3Y−0.5Zr alloys. 展开更多
关键词 Mg−xGd−3Y−0.5Zr alloy MICROSTRUCTURE dynamic mechanical properties rare earth hydrides dynamic precipitated phase
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部