期刊文献+
共找到955篇文章
< 1 2 48 >
每页显示 20 50 100
Some Group Runs Based Multivariate Control Charts for Monitoring the Process Mean Vector
1
作者 Mukund Parasharam Gadre Vikas Chintaman Kakade 《Open Journal of Statistics》 2016年第6期1098-1109,共13页
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ... In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts. 展开更多
关键词 Some Group Runs Based Multivariate Control Charts for Monitoring the Process mean vector
在线阅读 下载PDF
基于K-means聚类的LSTM-SVR-DE光伏功率组合预测 被引量:2
2
作者 张元曦 杨国华 +4 位作者 杨娜 李祯 马鑫 刘浩睿 南少帅 《综合智慧能源》 2025年第2期71-78,共8页
为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合... 为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合,并使用差分进化算法(DE)寻找最佳组合权重。最后,对宁夏某光伏电站的真实数据进行仿真和对比研究,结果表明该方法对比LSTM和SVR模型预测误差减小约70%。 展开更多
关键词 K-meanS聚类 LSTM神经网络 支持向量回归 差分进化法 光伏功率预测
在线阅读 下载PDF
The Submanifolds with Parallel Mean Curvature Vector in a Locally Symmetric and Conformally Flat Riemannian Manifold 被引量:8
3
作者 孙华飞 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第1期32-36,共5页
In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the... In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1). 展开更多
关键词 Locally symmetric conformally flat parallel mean curvature vector
在线阅读 下载PDF
High-dimensional Tests for Mean Vector: Approaches without Estimating the Mean Vector Directly 被引量:1
4
作者 Bo CHEN Hai-meng WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第1期78-86,共9页
Several tests for multivariate mean vector have been proposed in the recent literature.Generally,these tests are directly concerned with the mean vector of a high-dimensional distribution.The paper presents two new te... Several tests for multivariate mean vector have been proposed in the recent literature.Generally,these tests are directly concerned with the mean vector of a high-dimensional distribution.The paper presents two new test procedures for testing mean vector in large dimension and small samples.We do not focus on the mean vector directly,which is a different framework from the existing choices.The first test procedure is based on the asymptotic distribution of the test statistic,where the dimension increases with the sample size.The second test procedure is based on the permutation distribution of the test statistic,where the sample size is fixed and the dimension grows to infinity.Simulations are carried out to examine the finite-sample performance of the tests and to compare them with some popular nonparametric tests available in the literature. 展开更多
关键词 asymptotic distribution high-dimensional data permutation test U-STATISTIC testing mean vector
原文传递
Superiority of empirical Bayes estimator of the mean vector in multivariate normal distribution
5
作者 YUAN Min WAN ChongLi WEI LaiSheng 《Science China Mathematics》 SCIE CSCD 2016年第6期1175-1186,共12页
In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased est... In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased estimator(MVUE) and a revised James-Stein estimators(RJSE) are investigated respectively under mean square error(MSE) criterion. Extensive simulations are conducted to show that performance of the PEBE is optimal among these three estimators under the MSE criterion. 展开更多
关键词 multivariate normal distribution mean vector MVUE PEBE RJSE mean square error
原文传递
Sign-based Test for Mean Vector in High-dimensional and Sparse Settings
6
作者 Wei LIU Ying Qiu LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第1期93-108,共16页
In this article, we introduce a robust sparse test statistic which is based on the maximum type statistic. Both the limiting null distribution of the test statistic and the power of the test are analysed. It is shown ... In this article, we introduce a robust sparse test statistic which is based on the maximum type statistic. Both the limiting null distribution of the test statistic and the power of the test are analysed. It is shown that the test is particularly powerful against sparse alternatives. Numerical studies are carried out to examine the numerical performance of the test and to compare it with other tests available in the literature. The numerical results show that the test proposed significantly outperforms those tests in a range of settings, especially for sparse alternatives. 展开更多
关键词 High-dimensional data maximum type test sign-based dense test sign-based sparsity test sum of squares type test testing mean vector
原文传递
ON DETECTION OF CHANGE POINTS USING MEAN VECTORS
7
作者 缪柏其 赵林城 P.R.KRISHNAIAH 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第3期193-203,共11页
In this paper,the authors consider the problem of change points within the framework of model selection and propose a procedure for estimating the locations of change points when the number of change points is known.T... In this paper,the authors consider the problem of change points within the framework of model selection and propose a procedure for estimating the locations of change points when the number of change points is known.The strong consistency of this procedure is also established. The problem of detecting change points is discussed within the framework of the simultaneous test procedure.The case where the number of change points is unknown will be discussed in another paper. 展开更多
关键词 ON DETECTION OF CHANGE POINTS USING mean vectorS
原文传递
面向众核处理器的阴阳K-means算法优化 被引量:1
8
作者 周天阳 王庆林 +4 位作者 李荣春 梅松竹 尹尚飞 郝若晨 刘杰 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第1期93-102,共10页
传统阴阳K-means算法处理大规模聚类问题时计算开销十分昂贵。针对典型众核处理器的体系结构特征,提出了一种阴阳K-means算法高效并行加速实现。该实现基于一种新内存数据布局,采用众核处理器中的向量单元来加速阴阳K-means中的距离计算... 传统阴阳K-means算法处理大规模聚类问题时计算开销十分昂贵。针对典型众核处理器的体系结构特征,提出了一种阴阳K-means算法高效并行加速实现。该实现基于一种新内存数据布局,采用众核处理器中的向量单元来加速阴阳K-means中的距离计算,并面向非一致内存访问(non-unified memory access, NUMA)特性进行了针对性的访存优化。与阴阳K-means算法的开源多线程实现相比,该实现在ARMv8和x86众核平台上分别获得了最高约5.6与8.7的加速比。因此上述优化方法在众核处理器上成功实现了对阴阳K-means算法的加速。 展开更多
关键词 K-meanS 非一致内存访问 向量化 众核处理器 性能优化
在线阅读 下载PDF
基于主题词向量中心点的K-means文本聚类算法 被引量:2
9
作者 季铎 刘云钊 +1 位作者 彭如香 孔华锋 《计算机应用与软件》 北大核心 2024年第10期282-286,318,共6页
K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策... K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策图进行初始类中心的选择,利用每个类簇的主题词向量替代均值作为迭代类中心。实验表明,该文的初始点选取方法能够准确地选取初始点,且利用主题词向量作为迭代类中心能够很好地避免噪声点和噪声特征的影响,很大程度上地提高了K-means算法的性能。 展开更多
关键词 K-meanS 初始点 决策图 迭代类中心 主题词向量
在线阅读 下载PDF
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
10
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(PV)modules weIghted mean oF vectors algorithm(INFO) renewable energy static PV models dynamic PV models solar energy
在线阅读 下载PDF
Use of Support Vector Regression Based on Mean Impact Value Model to Identify Active Compounds in a Combination of Curcuma longa L.and Glycyrrhiza extracts 被引量:3
11
作者 Jianlan Jiang Qingjie Tan +2 位作者 Weifeng Li Xinyun Du Ningzhi Liu 《Transactions of Tianjin University》 EI CAS 2017年第3期237-244,共8页
A support vector regression based on the mean impact value (MIV) model was constructed to identify the bioactive compounds inhibiting proliferation of HeLa cells in a combination of turmeric (Curcuma longa L.) and liq... A support vector regression based on the mean impact value (MIV) model was constructed to identify the bioactive compounds inhibiting proliferation of HeLa cells in a combination of turmeric (Curcuma longa L.) and liquorice (Glycyrrhiza) extracts. The quantitative chemical fingerprint from 50 batches of turmeric and liquorice extracts was established using high performance liquid chromatography hyphenated to an ultraviolet visible detector. Qualitative results were obtained using ultra performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. A total of 46 peaks (peaks 1–15 from turmeric and 16–46 from liquorice) were selected as “common peaks” for analysis. The inhibitory effect of the combined extracts on HeLa cells was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. It was found that 15 compounds (peaks: 8, 12, 30, 24, 46, 11, 14, 9, 3, 1, 44, 18, 7, 45 and 43) possessing high absolute MIV exhibited a significant correlation with the cytotoxicity against HeLa cells; most of these have already been confirmed with potential cytotoxicity in previous research. The important potential application of the present model can be extended to help discover active compounds from complex herbal medicine prior to traditional bioassay-guided separation. It is considered that this could be a useful tool for re-developing herbal medicine based on the use of these active compounds. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 BIOASSAY Electrospray ionization Food products High performance liquid chromatography Ionization of liquids Liquid chromatography Mass spectrometry Medicine Plant extracts Regression analysis
在线阅读 下载PDF
FAST IMAGE ENCODING ALGORITHM BASED ON MEAN-MATCH CORRELATION VECTOR QUANTIZATION 被引量:1
12
作者 徐润生 许晓鸣 张卫东 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第1期40-43,共4页
A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high co... A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ. 展开更多
关键词 image coding vector quantization mean match method
在线阅读 下载PDF
Multiple mental tasks classification based on nonlinear parameter of mean period using support vector machines
13
作者 刘海龙 王珏 郑崇勋 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期70-72,共3页
Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from freque... Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems. 展开更多
关键词 electroencephalography(EEG) brain-computer interface(BCI) mental tasks classification mean period support vector machine(SVM)
暂未订购
基于BERT-LDA和K-means聚类的绘画作品价值评估指标体系构建
14
作者 李天义 刘勤明 《软件工程》 2024年第1期68-73,共6页
针对目前绘画领域缺乏标准的价值评估指标体系,提出了基于BERT-LDA和K-means聚类的绘画作品价值要素挖掘方法。运用超平面法对绘画文献进行了停用词筛选,基于BERT-LDA模型构建了包含文本语义信息的融合特征向量,运用K-means算法对融合... 针对目前绘画领域缺乏标准的价值评估指标体系,提出了基于BERT-LDA和K-means聚类的绘画作品价值要素挖掘方法。运用超平面法对绘画文献进行了停用词筛选,基于BERT-LDA模型构建了包含文本语义信息的融合特征向量,运用K-means算法对融合特征向量进行降维可视化,随之构建了绘画作品价值评估指标体系。结果表明,基于BERT-LDA模型和K-means算法识别的主题及主题词相比传统LDA模型的查准率、查全率和F值分别提升了28.5%、10%和21.5%。通过随机森林等算法对指标体系进行验证,验证了构建的绘画作品价值评估指标体系的科学性。 展开更多
关键词 BERT-LDA 融合特征向量 K-meanS聚类 绘画 指标体系
在线阅读 下载PDF
MOTION VECTOR RECOVERY METHOD BASED ON MEAN SHIFT PROCEDURE
15
作者 Zhan Xuefeng Zhu Xiuchang 《Journal of Electronics(China)》 2010年第6期830-837,共8页
This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space... This letter presents a novel Motion Vector (MV) recovery method which is based on Mean Shift (MS) procedure. According to motion continuity, MVs in local area should be similar. If projecting MV into 2-D feature space, local MVs in the feature space tend to cluster closely. To estimate the lost MVs in local area, recovery of lost MVs is modeled as clustering operation. MS procedure is applied to enforce each lost MV in the feature space to shift to the position where dominant MVs are gathered. Meanwhile, bandwidth estimation is statistically characterized by the variation of local standard de-viations; weighted value calculation is determined by estimation of overall standard deviation. Simu-lation results demonstrate their better performance when compared with other MV recovery ap-proaches and low computation cost. 展开更多
关键词 Error concealment Motion vector (MV) recovery mean shift K-meanS Bandwidth estimation
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
16
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习机 向量加权平均算法 误差修正模型
原文传递
低温天气下考虑风机运行状态聚类的短期风电功率预测方法 被引量:3
17
作者 张扬帆 李奕霖 +3 位作者 叶林 付雪姣 王正宇 王耀函 《发电技术》 2025年第2期326-335,共10页
【目的】低温天气给包含高比例风电等新能源的电力系统运行带来了挑战,提升低温天气下的短期风电功率预测精度,将为电力系统的调度运行提供有效的决策信息。为此,提出一种低温天气下考虑机组运行状态聚类的风电功率预测方法。【方法】... 【目的】低温天气给包含高比例风电等新能源的电力系统运行带来了挑战,提升低温天气下的短期风电功率预测精度,将为电力系统的调度运行提供有效的决策信息。为此,提出一种低温天气下考虑机组运行状态聚类的风电功率预测方法。【方法】利用机组运行状态与保护控制信息,采用模糊C均值(fuzzy C-means,FCM)聚类算法对风电机组进行聚类;提出一种基于支持向量机的风机运行状态分组预测方法,预测风机是否处于正常运行状态;采用集成学习中的LightGBM算法预测风机正常运行时的功率值;基于运行状态和功率值的预测结果,给出风电场总体输出功率。最后,以冀北某风电场为例进行分析,验证所提方法的有效性。【结果】所提方法充分利用风机低温保护控制行为特征,准确预测了风电机组的关键切机时间,并给出停机容量,有效地拟合了风电功率曲线变化规律,将风电功率预测精度提升至90%以上。【结论】所提方法可为电力调度控制提供有效预测信息,也为大风等其他极端天气下的短期风电功率预测提供了参考。 展开更多
关键词 新能源 电力系统 风电 功率预测 机组运行 模糊C均值(FCM)聚类 支持向量机 电力调度控制
在线阅读 下载PDF
基于向量平均投影和IOWA算子的区间数组合预测模型
18
作者 胡凌云 蒋宗华 张林 《鞍山师范学院学报》 2025年第2期17-24,共8页
区间数是一类比较简单的模糊信息,构建区间数组合预测模型,可以在模糊预测问题中获得更符合实际的预测结果.通过将区间数的左右端点分开,引入向量平均投影和IOWA算子,针对实际值区间数的左端点序列和各单项预测值区间数左端点序列、实... 区间数是一类比较简单的模糊信息,构建区间数组合预测模型,可以在模糊预测问题中获得更符合实际的预测结果.通过将区间数的左右端点分开,引入向量平均投影和IOWA算子,针对实际值区间数的左端点序列和各单项预测值区间数左端点序列、实际值区间数的右端点序列和各单项预测值区间数右端点序列,分别构建向量平均投影和IOWA算子的多目标最优组合预测模型,利用偏好系数将多目标最优模型转换成单目标最优模型.通过实例数据加以验证,结果显示所构建的组合预测模型是合理有效的. 展开更多
关键词 组合预测 区间数 向量平均投影 IOWA算子
在线阅读 下载PDF
基于多信息融合的INFO-VMD-CNN的齿轮箱故障诊断方法
19
作者 吴胜利 郑子润 邢文婷 《振动与冲击》 北大核心 2025年第13期309-316,共8页
针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD... 针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)的齿轮故障诊断方法。该方法首先采用熵权法将不同位置的振动传感器信号信息进行融合,利用INFO对VMD算法中参数进行优化,并设计一个复合评价指标作为参数优化的评价标准,使用奇异峭度差分谱的方法对敏感分量进行重构;其次,从重构的信号中提取时域、频域特征并输入到CNN模型中进行分类;最后通过Shap(Shapley additive explanations)值法对模型输入特征的重要性进行排序,分析不同特征组合对模型分类和特定故障识别的影响。在东南大学行星齿轮数据集上进行验证,结果表明,利用所提特征组合进行故障诊断,CNN模型故障诊断准确率为98.24%,高于其他特征组合,为行星齿轮箱的故障诊断提供了一组有效的特征指标。 展开更多
关键词 行星齿轮箱故障诊断 向量加权平均算法(INFO) 奇异峭度差分谱 卷积神经网络(CNN) 评价指标 Shap值法
在线阅读 下载PDF
基于DWD-SVR模型的锂离子电池剩余使用寿命预测
20
作者 王小明 何叶 +3 位作者 王路路 吴红斌 徐斌 赵文广 《太阳能学报》 北大核心 2025年第2期52-59,共8页
针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K... 针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K-均值聚类方法将各尺度信号中样本熵与排列熵相近的子序列进行聚类,根据聚类结果将复杂度与随机性相近的子序列进行重构,以减少建模次数,提高预测效率;最后,通过SVR预测模型精确捕捉不同尺度下容量信号的变化情况,实现电池RUL准确预测。实验结果表明,提出的基于DWD-SVR模型的锂离子电池RUL预测方法能在保证全局退化趋势预测准确性的同时对波动进行及时地响应,可提高预测性能。 展开更多
关键词 锂离子电池 支持向量回归 K-均值聚类 剩余使用寿命 离散小波分解
原文传递
上一页 1 2 48 下一页 到第
使用帮助 返回顶部