期刊文献+
共找到3,918篇文章
< 1 2 196 >
每页显示 20 50 100
基于AE并融合GMM与K-means的无监督颤振监测研究
1
作者 王丹 张凤南 +1 位作者 马岩尉 刘博 《工具技术》 北大核心 2025年第2期139-145,共7页
金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣... 金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣削实验。该方法基于自动编码将信号的每一段压缩成二维,使用基于高斯混合模型和K-means合并的混合聚类方法对压缩信号进行聚类。所提出的方法在所有6个典型的无监督评价指标中都优于高斯混合模型和K-means算法。 展开更多
关键词 颤振监测 高斯混合模型 K-meanS 无监督聚类 自动编码器
在线阅读 下载PDF
基于K-Means-XGBoost-SHAP集成化框架的交通事故严重程度致因分析 被引量:3
2
作者 陈英 朱加勋 +2 位作者 田毅 欧阳昭衡 龙杰融 《中国公路学报》 北大核心 2025年第5期209-223,共15页
为了探究影响交通事故严重程度的关键因素及其影响机制,提出了一种融合K-Means算法、ADASYN(Adaptive Synthetic Sampling)算法、XGBoost模型以及SHAP归因分析方法的集成化分析框架,对长沙市2017~2019年的交通事故数据进行研究。首先,构... 为了探究影响交通事故严重程度的关键因素及其影响机制,提出了一种融合K-Means算法、ADASYN(Adaptive Synthetic Sampling)算法、XGBoost模型以及SHAP归因分析方法的集成化分析框架,对长沙市2017~2019年的交通事故数据进行研究。首先,构建K-Means模型将交通事故严重程度划分为4个等级(事故严重程度由高到低依次为:2类事故、3类事故、0类事故、1类事故)。其次,使用ADASYN算法解决4类事故样本不均衡问题。最后,基于平衡后的数据集利用XGBoost模型结合SHAP归因分析方法探究影响交通事故严重程度的重要因素及其影响机制,并引入三因素交互(3种因素交互组合)分析,进一步探讨不同因素组合对事故严重程度的作用机理。研究结果表明:(1)从全局上看,碰撞类型、道路类型、能见度、季节、昼夜时间等因素对事故严重程度的影响较大,但不同等级事故的关键影响因素存在差异;(2)同一因素对不同等级事故的影响存在差异,如秋冬季节对2类事故均有正向影响,但秋冬季节对0类和1类事故的影响无显著的倾向性;(3)同一因素在单因素分析和三因素交互分析中对事故的作用机理存在差异,如在单因素分析中,道路等级升高会增大发生严重事故的概率,在碰撞类型-道路类型-季节的交互分析中,当为车人事故时,秋冬季节发生2类事故的概率增大,但道路等级对其影响相对较小。 展开更多
关键词 交通工程 事故严重程度致因分析 XGBoost模型 交通事故 K-means模型 交互作用
原文传递
Model update mechanism for mean-shift tracking 被引量:3
3
作者 PengNingsong YangJie LiuErqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期52-57,共6页
In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and cur... In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion. 展开更多
关键词 mean-SHIFT TRACKING model update Kalman filter hypothesis testing.
在线阅读 下载PDF
Portfolio Choice under the Mean-Variance Model with Parameter Uncertainty 被引量:1
4
作者 何朝林 许倩 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期498-503,共6页
Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance mo... Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants. 展开更多
关键词 portfolio choice mean-variance model parameter uncertainty multi-prior approach constraint constant
在线阅读 下载PDF
Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model 被引量:1
5
作者 Zhaochun ZHANG, Deliang CUI, Baibiao HUANG, Xiaoyan QIN and Minhua JIANG (Institute of Crystal Materials, Shandong University, Jinan 250100, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期354-356,共3页
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr... In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model. 展开更多
关键词 In Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by means of Subregular Solution model
在线阅读 下载PDF
A New Mean Reversion Model of Close-End Fund
6
作者 LIU Wei 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期447-451,共5页
On the basis of fractal theory, one of the nonlinear theories, this paper studies the validity of Chinese fund market fractal time sequence through Hurst exponent, calculates the H value and proposes a new close-end f... On the basis of fractal theory, one of the nonlinear theories, this paper studies the validity of Chinese fund market fractal time sequence through Hurst exponent, calculates the H value and proposes a new close-end fund mean reversion model. Meanwhile, this paper validates the mean reversion time sequence for consecutive 54 week data of fund market. The result indicates that this model can effectively prove that Chinese close-end fund market follows the biased random walk. The research also proves that the fund discount does have mean reversion tendency and averagely the fund with high discount has a higher excess yield than that of the fund with low discount. The mean excess yield and the ratio between discount rate deviation and standard deviation demonstrate a descending relationship. The optimum investment period based on "mean reversion" is one month. Consequently this model provides a new arbitrage method through the discount of close-end fund. 展开更多
关键词 close-end fund Hurst exponent mean reversion model arbitrage opportunity
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
7
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-meanS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
Joint Variable Selection of Mean-Covariance Model for Longitudinal Data 被引量:2
8
作者 Dengke Xu Zhongzhan Zhang Liucang Wu 《Open Journal of Statistics》 2013年第1期27-35,共9页
In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance m... In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a penalized maximum likelihood method for variable selection in joint mean and covariance models based on this decomposition. Under certain regularity conditions, we establish the consistency and asymptotic normality of the penalized maximum likelihood estimators of parameters in the models. Simulation studies are undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 JOINT mean and COVARIANCE models Variable Selection Cholesky DECOMPOSITION Longitudinal Data Penalized MAXIMUM LIKELIHOOD Method
在线阅读 下载PDF
Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type 被引量:1
9
作者 严绍瑾 彭永清 郭光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期225-232,共8页
In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level... In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%. 展开更多
关键词 Neural netWork BP-type multilevel mapping model Monthly mean temperature prediction
在线阅读 下载PDF
Exact analytical solutions to the mean-field model depicting microcavity containing semiconductor quantum wells
10
作者 宋佩君 吕新友 +1 位作者 刘继兵 郝向英 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期85-91,共7页
By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we ... By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition. 展开更多
关键词 mean-field model MICROCAVITY exact analytical solutions
原文传递
基于K-means聚类与LSTM模型的多能源耦合电力负荷预测 被引量:4
11
作者 葛亚明 仇晨光 +3 位作者 谢丽荣 李艺丰 李刚 赵玉林 《现代电力》 北大核心 2025年第2期369-376,共8页
伴随“碳达峰,碳中和”目标的提出,提升可再生能源利用率和保障能源系统灵活运用是当下电力市场发展的必然要求。与传统供能模式相比,综合能源系统考虑多能耦合协调发展,在电力市场化过程中,用能特性变化导致负荷波动规律性不明晰,影响... 伴随“碳达峰,碳中和”目标的提出,提升可再生能源利用率和保障能源系统灵活运用是当下电力市场发展的必然要求。与传统供能模式相比,综合能源系统考虑多能耦合协调发展,在电力市场化过程中,用能特性变化导致负荷波动规律性不明晰,影响因素的增多使负荷预测难度增大。首先分析多能耦合用能特性和影响因子间的相关性,其次对各主要因素开展K-means聚类分析,选择具有代表意义的典型日作为预测样本,采用LSTM模型预测考虑多能源间相互影响的电力负荷,建立电力负荷预测模型。最后以某综合能源园区为例进行算例分析,对比采用该方法前后预测数据的精确度,分别计算各项误差变化比例证明方法的可行性,为多能耦合的电力负荷预测提供理论基础。 展开更多
关键词 综合能源 K-meanS聚类 LSTM模型 负荷预测
原文传递
A Fractional Micro-Macro Model for Crowds of Pedestrians Based on Fractional Mean Field Games 被引量:1
12
作者 Kecai Cao Yang Quan Chen Daniel Stuart 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期261-270,共10页
Modeling a crowd of pedestrians has been considered in this paper from different aspects. Based on fractional microscopic model that may be much more close to reality, a fractional macroscopic model has been proposed ... Modeling a crowd of pedestrians has been considered in this paper from different aspects. Based on fractional microscopic model that may be much more close to reality, a fractional macroscopic model has been proposed using conservation law of mass. Then in order to characterize the competitive and cooperative interactions among pedestrians, fractional mean field games are utilized in the modeling problem when the number of pedestrians goes to infinity and fractional dynamic model composed of fractional backward and fractional forward equations are constructed in macro scale. Fractional micromacro model for crowds of pedestrians are obtained in the end. Simulation results are also included to illustrate the proposed fractional microscopic model and fractional macroscopic model, respectively. © 2014 Chinese Association of Automation. 展开更多
关键词 Control systems Electrical engineering
在线阅读 下载PDF
Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables 被引量:28
13
作者 Marla C.Maniquiz Soyoung Lee Lee-Hyung Kim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第6期946-952,共7页
Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calcu... Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models. 展开更多
关键词 event mean concentration (EMC) multiple linear regression model LOAD non-point sources RAINFALL urban runoff
原文传递
社区尺度城市形态热环境效应异质性及聚类分区——基于MGWR与K-means方法的集成应用 被引量:3
14
作者 艾合麦提·那麦提 曾穗平 +1 位作者 吐孙阿伊·吐尔洪 曾坚 《地理科学进展》 北大核心 2025年第1期199-210,共12页
探究城市形态对热环境的影响是实现可持续城市规划和改善热环境的关键。论文以典型的高密度城区——天津市南开区作为研究区,借助建筑和遥感影像数据,量化社区尺度的城市形态和夏季地表温度,并通过多尺度地理加权回归模型和K-means聚类... 探究城市形态对热环境的影响是实现可持续城市规划和改善热环境的关键。论文以典型的高密度城区——天津市南开区作为研究区,借助建筑和遥感影像数据,量化社区尺度的城市形态和夏季地表温度,并通过多尺度地理加权回归模型和K-means聚类方法的集成应用,探究城市形态对地表温度的空间异质性影响并对其进行聚类分区。结果表明:①天津南开区夏季地表温度呈展现“北高南低”分布及显著空间正自相关性,形成“高—高”与“低—低”聚集模式。②多尺度地理加权回归模型在拟合和解释城市形态与地表温度关系方面显著优于普通最小二乘法和地理加权回归模型。③城市形态指标对夏季地表温度的影响存在多尺度空间异质性,其影响力依据平均大小顺序可排列为:建筑密度>归一化差异植被指数>容积率>建筑体积密度。其中,建筑密度和建筑体积密度促进地表温度的升高,而归一化植被指数和容积率则对其起到显著的降温效应。④基于城市形态指标对夏季地表温度影响的空间异质性进行聚类,可将研究区划分为三个显著不同的区域,并制定差异化的规划策略。研究结果可为社区热环境优化提供科学依据。此外,多尺度地理加权回归模型和K-means聚类方法的有效集成,为城市热环境研究和相关领域提供新视角和方法学框架。 展开更多
关键词 城市形态 城市热环境 地表温度 多尺度地理加权回归模型 K-meanS聚类 天津
原文传递
A Mean-variance Problem in the Constant Elasticity of Variance(CEV) Model
15
作者 Hou Ying-li Liu Guo-xin Jiang Chun-lan 《Communications in Mathematical Research》 CSCD 2015年第3期242-252,共11页
In this paper, we focus on a constant elasticity of variance (CEV) modeland want to find its optimal strategies for a mean-variance problem under two constrainedcontrols: reinsurance/new business and investment (n... In this paper, we focus on a constant elasticity of variance (CEV) modeland want to find its optimal strategies for a mean-variance problem under two constrainedcontrols: reinsurance/new business and investment (no-shorting). First, aLagrange multiplier is introduced to simplify the mean-variance problem and thecorresponding Hamilton-Jacobi-Bellman (HJB) equation is established. Via a powertransformation technique and variable change method, the optimal strategies withthe Lagrange multiplier are obtained. Final, based on the Lagrange duality theorem,the optimal strategies and optimal value for the original problem (i.e., the efficientstrategies and efficient frontier) are derived explicitly. 展开更多
关键词 constant elasticity of variance model mean-VARIANCE optimal strategy
在线阅读 下载PDF
Performance of CMIP6 models in simulating the dynamic sea level:Mean and interannual variance
16
作者 Hongying Chen Zhuoqi He +1 位作者 Qiang Xie Wei Zhuang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期34-40,共7页
本研究采用卫星测高数据与第六次国际耦合模式比较计划(CMIP6)海平面动力进行对比,重点针对40S-40N地区的动力海平面(DSL),评估了模式对其平均态与年际变率的综合模拟能力,结果表明,对于DSL平均态的模拟,模式与观测结果非常吻合,模式之... 本研究采用卫星测高数据与第六次国际耦合模式比较计划(CMIP6)海平面动力进行对比,重点针对40S-40N地区的动力海平面(DSL),评估了模式对其平均态与年际变率的综合模拟能力,结果表明,对于DSL平均态的模拟,模式与观测结果非常吻合,模式之间的差异较小.其中,副热带北大西洋是模拟偏差和模式间差异较为显著的区域,对于DSL年际变率的模拟,模式之间保持较高的一致性,但是,模式与观测结果存在明显差异,模式普遍低估了DSL的年际方差;其中,误差大值区域出现在副热带西边界流附近,模式分辨率会影响CMIP6对中小尺度海洋过程的重现能力,这可能是导致CMIP6历史模拟出现误差的原因之一. 展开更多
关键词 动力海平面 CMIP6 平均态 年际变率 模式分辨率
在线阅读 下载PDF
基于数据驱动的遥测缓变参数快速全局K-Means聚类异常检测包络模型 被引量:1
17
作者 胡健 刘学 《舰船电子工程》 2025年第2期129-132,181,共5页
遥测参数是反映飞行器状态和环境的重要参数,为了实现对遥测缓变参数异常的快速识别和检测,改进传统设定单一上下界值进行遥测参数异常判定的方法,论文提出了一种基于数据驱动的遥测缓变参数快速全局K-Means聚类异常检测包络模型,通过... 遥测参数是反映飞行器状态和环境的重要参数,为了实现对遥测缓变参数异常的快速识别和检测,改进传统设定单一上下界值进行遥测参数异常判定的方法,论文提出了一种基于数据驱动的遥测缓变参数快速全局K-Means聚类异常检测包络模型,通过利用快速全局K-Means聚类算法计算样本数据的聚类中心,然后考虑噪声特性利用动态变步长计算包络上下界,得到遥测缓变参数异常检测包络模型。通过算例仿真分析,验证了论文方法能够有效实现对遥测缓变参数异常的快速检测。 展开更多
关键词 遥测缓变参数 数据驱动 K-meanS聚类 包络模型 异常检测
在线阅读 下载PDF
An Improved Heterogeneous Mean-Field Theory for the Ising Model on Complex Networks
18
作者 Feng Huang Han-Shuang Chen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第12期1475-1479,共5页
Heterogeneous mean-field theory is commonly used methodology to study dynamical processes on complex networks,such as epidemic spreading and phase transitions in spin models.In this paper,we propose an improved hetero... Heterogeneous mean-field theory is commonly used methodology to study dynamical processes on complex networks,such as epidemic spreading and phase transitions in spin models.In this paper,we propose an improved heterogeneous mean-field theory for studying the Ising model on complex networks.Our method shows a more accurate prediction in the critical temperature of the Ising model than the previous heterogeneous mean-field theory.The theoretical results are validated by extensive Monte Carlo simulations in various types of networks. 展开更多
关键词 heterogeneous mean field theory Ising model phase transition
原文传递
基于K-means聚类与决策树混合模型的农村普惠金融信贷风险评估实证研究
19
作者 范艳 葛潇 石志岩 《数理统计与管理》 北大核心 2025年第6期987-1005,共19页
本文聚焦农户消费行为视角,利用K-means聚类分析和决策树模型构建数据驱动的助农贷款资质甄别框架,旨在打破传统农村金融体系中信息不对称和风险评估困难所导致的“暗箱”操作模式。通过对安徽三县4800名农户进行问卷调查,得到有效样本4... 本文聚焦农户消费行为视角,利用K-means聚类分析和决策树模型构建数据驱动的助农贷款资质甄别框架,旨在打破传统农村金融体系中信息不对称和风险评估困难所导致的“暗箱”操作模式。通过对安徽三县4800名农户进行问卷调查,得到有效样本4039例,收集了涵盖经济背景、消费模式等多元维度的详实数据。通过K-means算法成功将样本的放贷资质进行预测甄别结合决策树模型进行预测检验,展现出优秀的预测性能。通过对三家农商银行实地走访,随机抽取60例进行人工审核,模型预测结果与人工审批结果的平均一致率达到92.8%。该算法技术能够有效提升农村金融决策的透明度和科学性,优化资源配置,为农村普惠金融的精准放贷提供了有力支持,同时模型具备良好的通用性和拓展性,可应用于多种管理学场景,为农村金融及其他领域的现代化和智能化发展提供了新的思路和方法。 展开更多
关键词 精准放贷 农村普惠金融 消费行为 K-meanS算法 决策树模型
原文传递
Research on Mean-Variance Portfolio Model with singular Covariance Matrix
20
作者 Xinmeng Wang Haiyue Jin +1 位作者 Junjie Bai Yicheng Hong 《经济管理学刊(中英文版)》 2017年第2期60-66,共7页
关键词 协变性 矩阵解 模型 发现方法 模拟试验 非退化
在线阅读 下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部