期刊文献+
共找到547篇文章
< 1 2 28 >
每页显示 20 50 100
Prediction of snow water equivalent using artificial neural network and adaptive neuro-fuzzy inference system with two sampling schemes in semi-arid region of Iran 被引量:1
1
作者 Hojat GHANJKHANLO Mehdi VAFAKHAH +1 位作者 Hossein ZEINIVAND Ali FATHZADEH 《Journal of Mountain Science》 SCIE CSCD 2020年第7期1712-1723,共12页
Direct measurement of snow water equivalent(SWE)in snow-dominated mountainous areas is difficult,thus its prediction is essential for water resources management in such areas.In addition,because of nonlinear trend of ... Direct measurement of snow water equivalent(SWE)in snow-dominated mountainous areas is difficult,thus its prediction is essential for water resources management in such areas.In addition,because of nonlinear trend of snow spatial distribution and the multiple influencing factors concerning the SWE spatial distribution,statistical models are not usually able to present acceptable results.Therefore,applicable methods that are able to predict nonlinear trends are necessary.In this research,to predict SWE,the Sohrevard Watershed located in northwest of Iran was selected as the case study.Database was collected,and the required maps were derived.Snow depth(SD)at 150 points with two sampling patterns including systematic random sampling and Latin hypercube sampling(LHS),and snow density at 18 points were randomly measured,and then SWE was calculated.SWE was predicted using artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and regression methods.The results showed that the performance of ANN and ANFIS models with two sampling patterns were observed better than the regression method.Moreover,based on most of the efficiency criteria,the efficiency of ANN,ANFIS and regression methods under LHS pattern were observed higher than the systematic random sampling pattern.However,there were no significant differences between the two methods of ANN and ANFIS in SWE prediction.Data of both two sampling patterns had the highest sensitivity to the elevation.In addition,the LHS and the systematic random sampling patterns had the least sensitivity to the profile curvature and plan curvature,respectively. 展开更多
关键词 ANFIS ANN latin hypercube sampling Systematic random sampling Snow water equivalent Snow depth
原文传递
Comparison of sampling designs for calibrating digital soil maps at multiple depths 被引量:1
2
作者 Yakun ZHANG Daniel D.SAURETTE +3 位作者 Tahmid Huq EASHER Wenjun JI Viacheslav I.ADAMCHUK Asim BISWAS 《Pedosphere》 SCIE CAS CSCD 2022年第4期588-601,共14页
Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs an... Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties. 展开更多
关键词 3D digital soil mapping conditioned latin hypercube sampling grid sampling quantile random forest model stratified random sampling
原文传递
Optimization of Well Position and Sampling Frequency for Groundwater Monitoring and Inverse Identification of Contamination Source Conditions Using Bayes’Theorem 被引量:2
3
作者 Shuangsheng Zhang Hanhu Liu +3 位作者 Jing Qiang Hongze Gao Diego Galar Jing Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第5期373-394,共22页
Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including sour... Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results. 展开更多
关键词 Contamination source identification monitoring well optimization Bayes’Theorem information entropy differential evolution algorithm Metropolis Hastings algorithm latin hypercube sampling
在线阅读 下载PDF
Sampling Designs for Validating Digital Soil Maps: A Review 被引量:7
4
作者 Asim BISWAS Yakun ZHANG 《Pedosphere》 SCIE CAS CSCD 2018年第1期1-15,共15页
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia... Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers. 展开更多
关键词 calibration geographical space latin hypercube sampling model-based design spatial coverage three-dimensional(3D) digital soil mapping
原文传递
LOEV-APO-MLP:Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training
5
作者 Zhiwei Ye Dingfeng Song +7 位作者 Haitao Xie Jixin Zhang Wen Zhou Mengya Lei Xiao Zheng Jie Sun Jing Zhou Mengxuan Li 《Computers, Materials & Continua》 2025年第12期5509-5530,共22页
The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite ... The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods. 展开更多
关键词 Artificial protozoa optimizer multilayer perceptron latin hypercube sampling opposition-based learning neural network training
在线阅读 下载PDF
基于Latin方抽样和修正的Latin方抽样的可靠性灵敏度估计及其方差分析 被引量:14
6
作者 万越 吕震宙 袁修开 《机械强度》 EI CAS CSCD 北大核心 2008年第6期927-934,共8页
运用Latin方抽样(Latin hypercube sampling)方法和经统计相关减小方程修正后的Latin方抽样(updated Latin hypercube sampling)方法对结构进行可靠性灵敏度估计及其方差分析。单模式和多模式的数值及工程算例说明,可靠性灵敏度分析的La... 运用Latin方抽样(Latin hypercube sampling)方法和经统计相关减小方程修正后的Latin方抽样(updated Latin hypercube sampling)方法对结构进行可靠性灵敏度估计及其方差分析。单模式和多模式的数值及工程算例说明,可靠性灵敏度分析的Latin方抽样和修正的Latin方抽样在样本容量较小时都可以得到比Monte Carlo抽样方法更稳定的估计结果。采用Latin方抽样可以得到可靠性灵敏度的无偏估计,而修正的Latin方抽样方法在样本容量较小的情况下得到的可靠性灵敏度估计值的方差的分散性较Latin方抽样有进一步的减小。Latin方抽样和修正的Latin方抽样方法对基本变量的分布形式和相关性等均无限定,是适用于结构可靠性灵敏度分析的一种有效而实用的小样本抽样方法。 展开更多
关键词 latin方抽样 修正的latin方抽样 统计相关减小方程 方差 MONTE Carlo
在线阅读 下载PDF
Latin抽样法在导弹结构裂纹概率仿真中的应用
7
作者 汤建湘 陈玉波 关正西 《上海航天》 1999年第4期23-26,共4页
提出了Latin抽样与分层抽样相结合的复合抽样方法,对于提高抽样精度和效率都有较为明显的作用,特别适用于结构裂纹概率的仿真和其它应用工程仿真计算。在复合抽样仿真计算示例中,对某型导弹的燃汽发生器进行了抽样仿真计算,所... 提出了Latin抽样与分层抽样相结合的复合抽样方法,对于提高抽样精度和效率都有较为明显的作用,特别适用于结构裂纹概率的仿真和其它应用工程仿真计算。在复合抽样仿真计算示例中,对某型导弹的燃汽发生器进行了抽样仿真计算,所得的抽样结果的精度和相关差都达到了令人满意的预期效果,与实验结果吻合。 展开更多
关键词 latin抽样法 导弹结构 裂纹概率 仿真
在线阅读 下载PDF
Multidisciplinary Design and Optimization of Satellite Launch Vehicle Using Latin Hypercube Design of Experiments 被引量:2
8
作者 AMER Farhan Rafique QASIM Zeeshan 《Computer Aided Drafting,Design and Manufacturing》 2009年第1期1-7,共7页
The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Lo... The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Low Earth Orbit (LEO) bound SLV comprising of solid and liquid stages with the use of Genetic Algorithm (GA) as global optimizer. Convergence of GA is improved by introducing initial population based on the Design of Experiments (DOE) Technique. Latin Hypercube Sampling (LHS)-DOE is used for its good space filling properties. LHS is a stratified random procedure that provides an efficient way of sampling variables from their multivariate distributions. In SLV design minimum Gross Lift offWeight (GLOW) concept is traditionally being sought. Since the development costs tend to vary as a function of GLOW, this minimum GLOW is considered as a minimum development cost concept. The design approach is meaningful to initial design sizing purpose for its computational efficiency gives a quick insight into the vehicle performance prior to detailed design. 展开更多
关键词 multidisciplinary design and optimization satellite launch vehicle solid propulsion liquid propulsion latin hypercube sampling design of experiments
在线阅读 下载PDF
Reliability-Based Optimization:Small Sample Optimization Strategy
9
作者 Drahomir Novak Ondrej Slowik Maosen Cao 《Journal of Computer and Communications》 2014年第11期31-37,共7页
The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process o... The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands. 展开更多
关键词 OPTIMIZATION Reliability Assessment Aimed Multilevel sampling Monte Carlo latin Hypercube sampling Probability of Failure Reliability-Based Design Optimization Small sample Analysis
暂未订购
基于优选模型和灰狼算法的注塑工艺参数优化 被引量:1
10
作者 林峰 孙永华 +2 位作者 李国琳 李西兵 连灿鑫 《塑料》 北大核心 2025年第1期100-107,共8页
采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并... 采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并对这些模型进行细致的比较分析,筛选出性能最佳的模型。最后,利用灰狼优化算法对最优模型进行参数优化,得到最优注塑工艺参数组合,并进行模拟验证和实际验证。结果表明,采用优化后的注塑工艺参数组合制备的产品的体积收缩率显著减小,由初始的5.837%下降至4.01%,下降了31.3%,证明了结合计算机模拟、更优的模型和智能优化算法在注塑工艺优化中具有有效性及较好的应用潜力。 展开更多
关键词 注塑工艺参数 筛选试验设计 中心复合试验 最优拉丁超立方抽样 灰狼优化算法
原文传递
基于随机场理论的无砟轨道荷载效应分析研究
11
作者 任娟娟 张琦 +1 位作者 邓世杰 刘延龙 《华中科技大学学报(自然科学版)》 北大核心 2025年第2期47-52,87,共7页
为实现对无砟轨道结构内部离散性的模拟并适应更加真实的运营场景,基于随机场理论进行了ABAQUS,Matlab和Python三方交互,建立了无砟轨道材料随机场精细化有限元模型且编制了相关子程序,开展了无砟轨道混凝土部件荷载效应随机分布特征研... 为实现对无砟轨道结构内部离散性的模拟并适应更加真实的运营场景,基于随机场理论进行了ABAQUS,Matlab和Python三方交互,建立了无砟轨道材料随机场精细化有限元模型且编制了相关子程序,开展了无砟轨道混凝土部件荷载效应随机分布特征研究.计算结果表明,拉丁超立方法具有更高效、客观的抽样性,该模型能够更加真实地反映无砟轨道荷载效应的随机分布关系.随着混凝土材料参数变异系数的增大,各荷载效应均朝着最不利情况发展,其中当变异系数从0.02增大至0.10时,轨道板最大纵向拉应力从1.38 MPa增加到1.76 MPa,具有较大增幅. 展开更多
关键词 无砟轨道 随机场理论 荷载效应 拉丁超立方抽样 数值模拟
原文传递
基于自适应差分混合蝴蝶粒子优化算法的渗透系数反演
12
作者 杨曌 董东林 +1 位作者 陈宇祺 王蓉 《水文地质工程地质》 北大核心 2025年第4期134-144,共11页
准确获取渗透系数等含水层水文参数是矿井水害防治的前提,但传统配线法、图解法等反演方法在计算速度、结果精度等方面表现略差。为提升含水层参数反演计算的可靠性,此次研究针对水文地质参数本身特性,设计了一种新的渗透系数反演模型,... 准确获取渗透系数等含水层水文参数是矿井水害防治的前提,但传统配线法、图解法等反演方法在计算速度、结果精度等方面表现略差。为提升含水层参数反演计算的可靠性,此次研究针对水文地质参数本身特性,设计了一种新的渗透系数反演模型,即自适应差分混合蝴蝶粒子算法(adaptive differential hybrid butterfly particle algorithm,ADHBPA)。模型采用拉丁超立方采样策略、双曲余弦自适应函数、差分变异策略以及逐维变异策略进行算法优化,克服了水文地质参数反演过程中的空间异质性和时间动态性等问题,提高全局搜索与局部搜索间的平衡能力。以板集矿区24?口钻孔抽水试验数据为例开展验证,结果显示,ADHBPA模型计算降深与观测降深拟合最大误差为0.93?m,平均误差率仅0.15%,其余算法平均误差率均在30%~50%,表明多策略协同优化显著增强了算法跳出局部最优的能力,实现了有限数据前提下对含水层渗透系数的快速高精度反演。该算法为矿井水害风险评价与防治水方案制定提供了高效可靠的技术支撑。 展开更多
关键词 渗透系数 裘布依公式 拉丁超立方采样 差分变异策略 双曲余弦函数 混合优化策略
在线阅读 下载PDF
考虑全飞行阶段的防冰严酷工况确定及验证
13
作者 胡雪兰 王艺丹 +1 位作者 牛一凡 姚佳伟 《中国民航大学学报》 2025年第1期11-19,共9页
确定满足适航要求的严酷工况是机翼结冰适航审定过程中的必要环节,传统的防冰严酷工况计算方法需要大量重复计算,因此,本文结合拉丁超立方抽样和严酷评估指数提出了一种基于CCAR-25附录C(简称附录C)的考虑全飞行阶段、全冰积聚条件确定... 确定满足适航要求的严酷工况是机翼结冰适航审定过程中的必要环节,传统的防冰严酷工况计算方法需要大量重复计算,因此,本文结合拉丁超立方抽样和严酷评估指数提出了一种基于CCAR-25附录C(简称附录C)的考虑全飞行阶段、全冰积聚条件确定严酷工况的简化方法,并利用计算流体力学模型验证其可行性。首先,基于附录C明确了结冰工况参数区间,利用拉丁超立方抽样实现了连续参数区间的离散化,获得组合工况;其次,引入严酷评估指数,对结冰工况进行排序,并通过单变量结冰条件及连续最大结冰条件下机翼结冰的计算流体力学仿真计算,验证了在相同冰型下该严酷评估指数可以以结冰量(包括结冰总质量和最大结冰厚度)作为评价指标,用于严酷程度评估,证明了其绝对值越大,工况越严酷;等待阶段由于飞行时间远大于其他飞行阶段,导致其结冰严酷程度最高,严酷工况均在等待阶段;最后,通过本文提出的严酷工况确定方法给出了基于附录C的严酷工况。 展开更多
关键词 严酷工况 拉丁超立方抽样 严酷评估指数 机翼结冰 适航
在线阅读 下载PDF
基于源-荷不确定性的上海典型园区用能预测
14
作者 李峥嵘 蒋雅婷 《西安工程大学学报》 2025年第1期62-71,共10页
为探究园区设计规划阶段建筑群用能及可再生能源供能的不确定性,采用自下而上的方法,利用EnergyPlus和PVsyst建立了上海典型园区建筑群的用能及光伏发电物理模型,生成了不同季节(供冷季、供暖季、过渡季)、天气类型(晴天、多云、阴天)... 为探究园区设计规划阶段建筑群用能及可再生能源供能的不确定性,采用自下而上的方法,利用EnergyPlus和PVsyst建立了上海典型园区建筑群的用能及光伏发电物理模型,生成了不同季节(供冷季、供暖季、过渡季)、天气类型(晴天、多云、阴天)及用能特征(工作日、非工作日)下的确定性情景集。基于场景分析法,通过拉丁超立方抽样和k-means聚类方法,生成并缩减了不确定性场景集,得到了典型用能曲线及其贡献率,并对园区不同情景的用能特征进行分析。结果表明,过渡季建筑群用能不确定性最大,供冷季、供暖季次之,不确定性上下区间变化率最大可达9.34%和9.76%。光伏发电的不确定性在晴天和多云天气下更为显著,尤其是在供冷季和供暖季,不确定性上下区间变化率最大可达13.25%和16.78%。源-荷双重不确定性下,光伏消纳率最多可降低10.24%,光伏弃光率最多可增加10.23%。并进一步指出储能技术在高不确定性情景下的重要性,特别是在供冷季高峰负荷和非工作日低负荷时段,储能系统的应用能够显著提升能源利用效率。 展开更多
关键词 用能 可再生能源供能 场景分析法 负荷预测 不确定性分析 拉丁超立方抽样
在线阅读 下载PDF
利用拉丁超立方与相关性采样的通风系统仿真不确定研究 被引量:2
15
作者 曹鹏 刘剑 《安全与环境学报》 北大核心 2025年第3期1016-1025,共10页
为降低数字通风系统仿真不确定性给智能通风决策带来的安全隐患,基于巷道风阻系数获取过程中存在的不确定性,同时考虑相同支护巷道间的相关性,提出了一种结合全局模拟的拉丁超立方采样(Latin Hypercube Sampling,LHS)技术和关注局部相... 为降低数字通风系统仿真不确定性给智能通风决策带来的安全隐患,基于巷道风阻系数获取过程中存在的不确定性,同时考虑相同支护巷道间的相关性,提出了一种结合全局模拟的拉丁超立方采样(Latin Hypercube Sampling,LHS)技术和关注局部相关性的多维变量精确采样技术的数字通风系统不确定性分析方法。LHS随机模拟生成多维独立标准正态分布初始变量;利用乔莱斯基分解法分解风阻系数间协方差矩阵求得相关性变换矩阵;线性组合初始变量与变换矩阵生成具有相关性的风阻系数随机变量;随机变量作为数字通风系统的输入参数;解算风量和风压,统计仿真结果。结合实际生产矿井通风系统进行分析,结果表明:风阻系数的不确定性对数字通风系统仿真结果有显著影响;当不考虑相关性且风阻系数的变异系数为15%时,仿真风量和风压波动范围分别为0.62~73.88 m^(3)/s和0.06~522.89 Pa,平均波动率分别为83.04%和243.85%;考虑相关性时,风量和风压波动率分别下降了75.58%和84.97%,个别分支风量的波动率减少了95.90%;进风区分支和角联分支仿真风量、回风分支和角联分支仿真风压波动性最大;角联分支风量波动率最大为1115.09%,回风分支风压波动值最大为539.75 Pa。 展开更多
关键词 安全工程 矿井通风系统 不确定性分析 拉丁超立方采样 参数相关性
原文传递
计及三相不平衡的电动汽车充电站参与调压辅助服务模型 被引量:1
16
作者 朱晗 汪隆君 +1 位作者 陈志峰 王钢 《电力系统保护与控制》 北大核心 2025年第17期1-12,共12页
电动汽车充电站无功支撑能力的挖掘利用可优化配电网运行,解决配电网负荷、线路参数、新能源出力三相不平衡带来的电压越限问题,同时为电网节约调压成本。因此,提出了一种计及三相不平衡的电动汽车充电站参与调压辅助服务模型。首先,在... 电动汽车充电站无功支撑能力的挖掘利用可优化配电网运行,解决配电网负荷、线路参数、新能源出力三相不平衡带来的电压越限问题,同时为电网节约调压成本。因此,提出了一种计及三相不平衡的电动汽车充电站参与调压辅助服务模型。首先,在研究调压辅助服务市场化机制和电动汽车充电行为的基础上,分别预测慢充充电站和快充充电站的日负荷曲线,进而评估两种充电站的无功支撑能力。其次,建立了配电网多时间尺度日前-日内优化调度框架,日前优化模型以配电网调压成本最低为目标,以确定日内有载调压档位和电容器组计划。日内以网损和充电站补偿费用最小为目标进行滚动优化,以修正充电站参与调压辅助服务的无功功率。最后,通过IEEE33节点系统进行仿真验证。结果表明,所提模型能够有效降低配电网三相电压不平衡与调压成本。 展开更多
关键词 充电站 调压辅助服务 三相不平衡 拉丁超立方抽样 滚动优化 日前-日内优化
在线阅读 下载PDF
基于威布尔飞行和警戒机制的沙猫群优化算法及应用 被引量:2
17
作者 杨宇鸽 郝杨杨 王逸文 《计算机工程与应用》 北大核心 2025年第2期145-157,共13页
针对沙猫群优化算法收敛速度慢、寻优精度低等问题,提出了一种多策略改进的沙猫群优化算法。利用拉丁超立方抽样进行初始化,提升种群多样性;在搜索猎物阶段提出威布尔飞行,增强算法搜索能力;提出一种警戒机制,进一步提升算法的寻优能力... 针对沙猫群优化算法收敛速度慢、寻优精度低等问题,提出了一种多策略改进的沙猫群优化算法。利用拉丁超立方抽样进行初始化,提升种群多样性;在搜索猎物阶段提出威布尔飞行,增强算法搜索能力;提出一种警戒机制,进一步提升算法的寻优能力与收敛速度。使用具有挑战性的CEC2017函数进行函数测试,基于基准函数定性分析、寻优精度分析、改进策略有效性分析、收敛曲线分析以及Wilcoxon秩和检验、Friedman检验进行综合评价。实验结果表明,相比于其他3种沙猫群算法以及6种元启发式算法,所提出的算法在复杂函数上的寻优精度和收敛方面具有显著优越性。将该算法应用至变压器故障诊断实例中,进一步验证了ESCSO算法的有效性。 展开更多
关键词 元启发式算法 沙猫群算法 拉丁超立方抽样 威布尔飞行 警戒机制 变压器故障诊断
在线阅读 下载PDF
基于MARS的隧道工作面安全系数预测公式构建研究 被引量:1
18
作者 满建宏 黄宏伟 +1 位作者 王飞阳 陈佳耀 《应用基础与工程科学学报》 北大核心 2025年第2期526-536,共11页
为解决山岭隧道工作面稳定性评估难题,提出一种快速高效的评估模型.收集文献中包括GSI、σ_(c)和m_(i)等关键参数在内的818组数据,得到σc与mi以及GSI与σc的相关系数;结合拉丁超立方抽样和解析解构建Ⅴ级围岩隧道工作面稳定性数据库;通... 为解决山岭隧道工作面稳定性评估难题,提出一种快速高效的评估模型.收集文献中包括GSI、σ_(c)和m_(i)等关键参数在内的818组数据,得到σc与mi以及GSI与σc的相关系数;结合拉丁超立方抽样和解析解构建Ⅴ级围岩隧道工作面稳定性数据库;通过MARS(Multivariate Adaptive Regression Splines)算法建立隧道工作面安全系数的预测公式,将其评估结果与施工现场相验证.对比分析表明:相比于岩体自身参数(σ_(c)、m_(i)和GSI),隧道的几何参数更能影响工作面的稳定性;该模型对各因素之间的复杂隐式关系具有良好的可解释性,可实现快速、准确、可靠的计算.因此,该评估模型更便于施工现场的应用,可为岩石隧道工作面稳定性的快速评估提供参考. 展开更多
关键词 工作面稳定性 相关系数 解析解 MARS算法 拉丁超立方抽样 快速评估
原文传递
计及风光不确定性的现货-调频市场联合出清策略 被引量:1
19
作者 李建林 张梦圆 +2 位作者 王茜 彭禹宸 李璟延 《电力工程技术》 北大核心 2025年第3期53-63,共11页
为了面对具有不确定性的新能源大规模接入电网给传统电力市场带来的挑战,文中针对传统电力市场出清策略时间尺度长、新型交易主体收益低等问题,提出考虑风光不确定性的风光火储联合发电系统参与电力现货市场和调频辅助服务市场联合交易... 为了面对具有不确定性的新能源大规模接入电网给传统电力市场带来的挑战,文中针对传统电力市场出清策略时间尺度长、新型交易主体收益低等问题,提出考虑风光不确定性的风光火储联合发电系统参与电力现货市场和调频辅助服务市场联合交易的出清策略。首先通过拉丁超立方抽样和Kantorovich距离削减对样本场景进行处理,生成典型的风光出力场景;然后以生成的典型风光出力场景为研究对象,提出以最小化发电成本为目标的风光火储联合发电系统参与电力现货市场和调频辅助服务市场联合交易的出清策略,并采用交替方向乘子法(alternating direction method of multipliers,ADMM)进行求解;最后在IEEE 39节点系统中搭建相应的数学模型,采用西北某地风光数据为算例进行仿真验证。结果表明,文中所提策略可以合理分配能源出力,提高能源利用率和各交易主体的收益。 展开更多
关键词 风光不确定性 Kantorovich距离削减 拉丁超立方抽样 电力现货市场 调频辅助服务市场 联合出清策略
在线阅读 下载PDF
面向船舶大型曲面薄板的装配形变TSM-TLHS预测方法
20
作者 金轩铖 洪舸 +3 位作者 高硕 夏唐斌 胡小锋 奚立峰 《上海交通大学学报》 北大核心 2025年第8期1092-1102,共11页
船舶分段装配过程中,大型曲面薄板(如外板)放置在胎架上时,会受重力作用发生形变,将影响装配精度进而影响分段建造质量.为预测给定胎架布局下大型曲面薄板的形变,建立了一种基于两阶段拉丁超立方采样和Transformer神经网络结构的代理模... 船舶分段装配过程中,大型曲面薄板(如外板)放置在胎架上时,会受重力作用发生形变,将影响装配精度进而影响分段建造质量.为预测给定胎架布局下大型曲面薄板的形变,建立了一种基于两阶段拉丁超立方采样和Transformer神经网络结构的代理模型(TSM-TLHS).首先,设计了两阶段拉丁超立方采样,相较传统方法,能直接适用于形状不规则薄板的采样.同时,建立了包含多头注意力模块和位置编码的Transformer代理模型,综合考虑了胎架位置与胎架布置点位移对薄板形变的影响.实际案例结果显示,提出的TSM-TLHS方法的预测误差仅为61μm,且满足现场装配对薄板形变的预测精度需求,便于船厂及时对分段进行反变形补偿,从而确保装配质量. 展开更多
关键词 分段装配 曲面薄板 形变预测 代理模型 拉丁超立方采样
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部