Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design...Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED.展开更多
Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation res...Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation results are presented. It is shown that the proposed ML algorithm is at least 0.7 dB better than the conventional Matched-Filter (MF) algorithm for uncoded systems, in both non-fading and fading channels. For the consideration of practical application, it is further simplified in complexity. Compared with the original ML algorithm, the simplified ML algorithm can provide significant reduction in complexity with small degradation in performance.展开更多
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine ...Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine the internal conditions of sewage pipes.Due to the extensive inventory of pipes and associated costs,it is not practical for municipalities to conduct inspections on each sanitary sewage pipe section.According to the ASCE(American Society of Civil Engineers)infrastructure report published in 2021,combined investment needs for water and wastewater systems are estimated to be$150 billion during 2016-2025.Therefore,new solutions are needed to fill the trillion-dollar investment gap to improve the existing water and wastewater infrastructure for the coming years.ML(machine learning)based prediction model development is an effective method for predicting the condition of sewer pipes.In this research,sewer pipe inspection data from several municipalities are collected,which include variables such as pipe material,age,diameter,length,soil type,slope of construction,and PACP(Pipeline Assessment Certification Program)score.These sewer pipe data exhibit a severe imbalance in pipes’PACP scores,which is considered the target variable in the development of models.Due to this imbalanced dataset,the performance of the sewer prediction model is poor.This paper,therefore,aims to employ oversampling and hyperparameter tuning techniques to treat the imbalanced data and improve the model’s performance significantly.Utility owners and municipal asset managers can utilize the developed models to make more informed decisions on future inspections of sewer pipelines.展开更多
Bat algorithm(BA)is an eminent meta-heuristic algorithm that has been widely used to solve diverse kinds of optimization problems.BA leverages the echolocation feature of bats produced by imitating the bats’searching...Bat algorithm(BA)is an eminent meta-heuristic algorithm that has been widely used to solve diverse kinds of optimization problems.BA leverages the echolocation feature of bats produced by imitating the bats’searching behavior.BA faces premature convergence due to its local search capability.Instead of using the standard uniform walk,the Torus walk is viewed as a promising alternative to improve the local search capability.In this work,we proposed an improved variation of BA by applying torus walk to improve diversity and convergence.The proposed.Modern Computerized Bat Algorithm(MCBA)approach has been examined for fifteen well-known benchmark test problems.The finding of our technique shows promising performance as compared to the standard PSO and standard BA.The proposed MCBA,BPA,Standard PSO,and Standard BA have been examined for well-known benchmark test problems and training of the artificial neural network(ANN).We have performed experiments using eight benchmark datasets applied from the worldwide famous machine-learning(ML)repository of UCI.Simulation results have shown that the training of an ANN with MCBA-NN algorithm tops the list considering exactness,with more superiority compared to the traditional methodologies.The MCBA-NN algorithm may be used effectively for data classification and statistical problems in the future.展开更多
This paper presents an improved voice morphing algorithm based on Gaussian Mixture Model(GMM) which overcomes the traditional one in the terms of overly smoothed problems of the converted spectral and discontinuities ...This paper presents an improved voice morphing algorithm based on Gaussian Mixture Model(GMM) which overcomes the traditional one in the terms of overly smoothed problems of the converted spectral and discontinuities between frames.Firstly, a maximum likelihood estimation for the model is introduced for the alleviation of the inversion of high dimension matrixes caused by traditional conversion function.Then, in order to resolve the two problems associated with the baseline, a codebook compensation technique and a time domain medial filter are applied.The results of listening evaluations show that the quality of the speech converted by the proposed method is significantly better than that by the traditional GMM method, and the Mean Opinion Score(MOS) of the converted speech is improved from 2.5 to 3.1 and ABX score from 38% to 75%.展开更多
文摘Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED.
文摘Based on the Maximum-Likelihood (ML) criterion, this paper proposes a novel noncoherent detection algorithm for Orthogonal Multicode (OM) system in Nakagami fading channel. Some theoretical analysis and simulation results are presented. It is shown that the proposed ML algorithm is at least 0.7 dB better than the conventional Matched-Filter (MF) algorithm for uncoded systems, in both non-fading and fading channels. For the consideration of practical application, it is further simplified in complexity. Compared with the original ML algorithm, the simplified ML algorithm can provide significant reduction in complexity with small degradation in performance.
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
文摘Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine the internal conditions of sewage pipes.Due to the extensive inventory of pipes and associated costs,it is not practical for municipalities to conduct inspections on each sanitary sewage pipe section.According to the ASCE(American Society of Civil Engineers)infrastructure report published in 2021,combined investment needs for water and wastewater systems are estimated to be$150 billion during 2016-2025.Therefore,new solutions are needed to fill the trillion-dollar investment gap to improve the existing water and wastewater infrastructure for the coming years.ML(machine learning)based prediction model development is an effective method for predicting the condition of sewer pipes.In this research,sewer pipe inspection data from several municipalities are collected,which include variables such as pipe material,age,diameter,length,soil type,slope of construction,and PACP(Pipeline Assessment Certification Program)score.These sewer pipe data exhibit a severe imbalance in pipes’PACP scores,which is considered the target variable in the development of models.Due to this imbalanced dataset,the performance of the sewer prediction model is poor.This paper,therefore,aims to employ oversampling and hyperparameter tuning techniques to treat the imbalanced data and improve the model’s performance significantly.Utility owners and municipal asset managers can utilize the developed models to make more informed decisions on future inspections of sewer pipelines.
基金The APC was funded by PPPI,University Malaysia Sabah,KK,Sabah,Malaysia,https://www.ums.edu.my.
文摘Bat algorithm(BA)is an eminent meta-heuristic algorithm that has been widely used to solve diverse kinds of optimization problems.BA leverages the echolocation feature of bats produced by imitating the bats’searching behavior.BA faces premature convergence due to its local search capability.Instead of using the standard uniform walk,the Torus walk is viewed as a promising alternative to improve the local search capability.In this work,we proposed an improved variation of BA by applying torus walk to improve diversity and convergence.The proposed.Modern Computerized Bat Algorithm(MCBA)approach has been examined for fifteen well-known benchmark test problems.The finding of our technique shows promising performance as compared to the standard PSO and standard BA.The proposed MCBA,BPA,Standard PSO,and Standard BA have been examined for well-known benchmark test problems and training of the artificial neural network(ANN).We have performed experiments using eight benchmark datasets applied from the worldwide famous machine-learning(ML)repository of UCI.Simulation results have shown that the training of an ANN with MCBA-NN algorithm tops the list considering exactness,with more superiority compared to the traditional methodologies.The MCBA-NN algorithm may be used effectively for data classification and statistical problems in the future.
基金Supported by a grant from the National High Technology Research and Development Program of China (863 Program, No.2006AA010102)the National Natural Science Foundation of China (No.60872105).
文摘This paper presents an improved voice morphing algorithm based on Gaussian Mixture Model(GMM) which overcomes the traditional one in the terms of overly smoothed problems of the converted spectral and discontinuities between frames.Firstly, a maximum likelihood estimation for the model is introduced for the alleviation of the inversion of high dimension matrixes caused by traditional conversion function.Then, in order to resolve the two problems associated with the baseline, a codebook compensation technique and a time domain medial filter are applied.The results of listening evaluations show that the quality of the speech converted by the proposed method is significantly better than that by the traditional GMM method, and the Mean Opinion Score(MOS) of the converted speech is improved from 2.5 to 3.1 and ABX score from 38% to 75%.