This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod...This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.展开更多
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d...The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum ...The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.展开更多
A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are sea...A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are seasonal variations and continuously changing weather conditions,which affect the amount of solar energy received by the solar panels.In addition,the non-linear characteristics of the voltage and current outputs along with the operating environment temperature and variation in the solar radiation decrease the energy conversion capability of the photovoltaic arrays.To address this problem,the global maxima of the PV arrays can be tracked using a maximum power point tracking algorithm(MPPT)and the operating point of the photovoltaic system can be forced to its optimum value.This technique increases the efficiency of the photovoltaic array and minimizes the cost of the system by reducing the number of solar modules required to obtain the desired power.However,the tracking algorithms are not equally effective in all areas of application.Therefore,selecting the correct MPPT is very critical.This paper presents a detailed review and comparison of the MPPT techniques for photovoltaic systems,with consideration of the following key parameters:photovoltaic array dependence,type of system(analog or digital),need for periodic tuning,convergence speed,complexity of the system,global maxima,implemented capacity,and sensed parameter(s).In addition,based on real meteorological data(irradiance and temperature at a site located in Addis Ababa,Ethiopia),a simulation is performed to evaluate the performance of tracking algorithms suitable for the application being studied.Finally,the study clearly validates the considerable energy saving achieved by using these algorithms.展开更多
In order to ensure that the photovoltaic(PV) array always works at the global maximum point of power to increase the system's overall efficiency, this paper leads the study on maximum power point tracking(MPPT) in...In order to ensure that the photovoltaic(PV) array always works at the global maximum point of power to increase the system's overall efficiency, this paper leads the study on maximum power point tracking(MPPT) in redundant load mode. A new control system is designed by combining the redundant electronic load module, embedded controller, supportive capacitor and boost circuit. The system adjusts duty ratio of boost circuit dynamically based on the maximum power point parameter provided by redundant load unit in order to realize MPPT. An experiment shows that no matter whether system is under an even illumination or partly perturbed by shadow, this method can find the exact maximum power point.展开更多
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of...In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.展开更多
Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall ...Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems.展开更多
Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV pane...Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.展开更多
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes o...This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes of various conventional, significance and novelty of controller system of the proposed of method and improved Incremental Conductance algorithms, Perturbation and Observation Techniques, and other Maximum Power Point Tracking (MPPT) algorithms in normal and partial shading conditions. Performance evaluation techniques are discussed on the basis of the dynamic parameters of the PV system although the control of this structure is relatively advanced technology but the conversion efficiency is difficult to improve due to increase in transformation series. The single stage topology has a simple topology with high reliability and efficiency because of high power consumption, but control algorithm is more complex because of its power convert main circuit a new strategy is being developed. This paper describes a method for maximum power point tracking (MPPT) in the single-stage and three single-phase PV grid-connected system. In the paper, the nonlinear output characteristics of the PV including I-V & P-V are obtained in changed solar insulations or temperature based on MATLAB, and the MPPT algorithm which is based on the P & O algorithm method, compared with Incremental Conductance, is also described, a dimensioning of the impedance adapter for better stabilization. A comparison SPWM and SVPWM control methods in the case of a grid connection applied to the electrical grid of Republic of Congo and their influences on the dynamic performance of the system and their impact in reducing the harmonic rate for better injection into the grid. The simulation model of three single-phase PV grid-connected system is built, and simulation results show the MPPT algorithm has excellent dynamic and static performances, which verifies the Incremental Conductance is effective for MPPT in the single-stage and three single-phase PV grid-connected system.展开更多
This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C...This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does.展开更多
To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array...To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the filzzy logic control algorithm.展开更多
This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power pro...This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.展开更多
A novel control strategy is introduced for tracking the maximum power point of a wind turbine coupled with a permanent magnet synchronous generator.In contrast to other control methods,this approach does not rely on a...A novel control strategy is introduced for tracking the maximum power point of a wind turbine coupled with a permanent magnet synchronous generator.In contrast to other control methods,this approach does not rely on an electrical actuator such as a rectifier or inverter.Instead,it uses a mechanical actuator—specifically,a speed multiplier—to ensure maximum power point(MPP)tracking.The selection of the optimal speed multiplication ratio enables the pursuit of the maximum power coefficient by adjusting the tip-speed ratio(𝜆)to its optimal value.This approach requires no learning time,only knowledge of the wind turbine and generator parameters,which are used for selecting or sizing the speed multiplier and for control purposes.The new approach is validated through simulation in Matlab/Simulink,incorporating a wind profile measured by our team over a 15-day period.The results demonstrate effective tracking of maximum power,achieving a power coefficient efficiency of 98.1%.Considering the measured variability of the wind,the overall energy efficiency over the 15 days reaches 99.16%.The approach is applied to a model of a low-power wind turbine designed for domestic applications.展开更多
The optimal torque(OT)method,which is preferred for its simplicity,is widely employed in maximum power point tracking(MPPT)control strategies for wind energy capture in wind turbine generators(WTGs).Based on the OT me...The optimal torque(OT)method,which is preferred for its simplicity,is widely employed in maximum power point tracking(MPPT)control strategies for wind energy capture in wind turbine generators(WTGs).Based on the OT method,the decreased torque gain(DTG)method is developed to improve turbine acceleration through a reduction of the torque gain coefficient.However,the DTG method does not fully align with the acceleration performance required by wind turbines,which subsequently limits improvements in wind energy capture efficiency.To address these concerns,a novel MPPT control strategy is proposed,which introduces redefined torque curve and torque command conceptualized based on a higher-order function relative to rotor speed.Additionally,an adaptive algorithm for the periodic update of the torque command is suggested to better accommodate the variability of turbulent wind speeds,thus aiming to improve the wind energy capture efficiency.The effectiveness of the proposed MPPT control strategy is substantiated through the wind turbine simulator(WTS)-based experiments.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maxim...Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maximum Power Point(GMPP)under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions.The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions(PSC).Still the selection of an efficient learning based MPPT is complex because each model has its advantages and drawbacks.Recently,Meta-heuristic algorithm based Learning techniques have provided better tracking efficiency but still exhibit dull performances under PSC.This work represents an excellent optimization based on Spotted Hyena Enabled Reliable BAT(SHERB)learning models,SHERB-MPPT integrated with powerful extreme learning machines to identify the GMPP with fast convergence,low steady-state oscillations,and good tracking efficiency.Extensive testing using MATLAB-SIMULINK,with 50000 data combinations gathered under partial shade and normal settings.As a result of simulations,the proposed approach offers 99.7%tracking efficiency with a slower convergence speed.To demonstrate the predominance of the proposed system,we have compared the performance of the system with other hybrid MPPT learning models.Results proved that the proposed cross breed MPPT model had beaten different techniques in recognizing GMPP viably under fractional concealing conditions.展开更多
基金supported by the 2022 Sanya Science and Technology Innovation Project,China(No.2022KJCX03)the Sanya Science and Education Innovation Park,Wuhan University of Technology,China(Grant No.2022KF0028)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.2021JJLH0036).
文摘This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.
文摘The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
文摘The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications.However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.
基金supported by the following project of the Addis Ababa Institute of Technology,African Railway Center of Excellence,and World Bank group:“A research on integration of renewable and Alternative Energy Sources into Ethiopian Railway System.”(AAITRS-GSR-7767-18).
文摘A photovoltaic array is environmentally friendly and a source of unlimited energy generation.However,it is presently a costlier energy generation system than other non-renewable energy sources.The main reasons are seasonal variations and continuously changing weather conditions,which affect the amount of solar energy received by the solar panels.In addition,the non-linear characteristics of the voltage and current outputs along with the operating environment temperature and variation in the solar radiation decrease the energy conversion capability of the photovoltaic arrays.To address this problem,the global maxima of the PV arrays can be tracked using a maximum power point tracking algorithm(MPPT)and the operating point of the photovoltaic system can be forced to its optimum value.This technique increases the efficiency of the photovoltaic array and minimizes the cost of the system by reducing the number of solar modules required to obtain the desired power.However,the tracking algorithms are not equally effective in all areas of application.Therefore,selecting the correct MPPT is very critical.This paper presents a detailed review and comparison of the MPPT techniques for photovoltaic systems,with consideration of the following key parameters:photovoltaic array dependence,type of system(analog or digital),need for periodic tuning,convergence speed,complexity of the system,global maxima,implemented capacity,and sensed parameter(s).In addition,based on real meteorological data(irradiance and temperature at a site located in Addis Ababa,Ethiopia),a simulation is performed to evaluate the performance of tracking algorithms suitable for the application being studied.Finally,the study clearly validates the considerable energy saving achieved by using these algorithms.
基金the National Natural Science Foundation of China(No.61107064)the Leading Academic Discipline Project of Communication and Information System(No.XXKZD1605)
文摘In order to ensure that the photovoltaic(PV) array always works at the global maximum point of power to increase the system's overall efficiency, this paper leads the study on maximum power point tracking(MPPT) in redundant load mode. A new control system is designed by combining the redundant electronic load module, embedded controller, supportive capacitor and boost circuit. The system adjusts duty ratio of boost circuit dynamically based on the maximum power point parameter provided by redundant load unit in order to realize MPPT. An experiment shows that no matter whether system is under an even illumination or partly perturbed by shadow, this method can find the exact maximum power point.
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
基金supported by the National Natural Science Foundation of China (Grant No.20576071)
文摘In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
基金funding from the Graduate Practice Innovation Program of Jiangsu University of Technology(XSJCX23_58)Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems.
文摘Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds.
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
文摘This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes of various conventional, significance and novelty of controller system of the proposed of method and improved Incremental Conductance algorithms, Perturbation and Observation Techniques, and other Maximum Power Point Tracking (MPPT) algorithms in normal and partial shading conditions. Performance evaluation techniques are discussed on the basis of the dynamic parameters of the PV system although the control of this structure is relatively advanced technology but the conversion efficiency is difficult to improve due to increase in transformation series. The single stage topology has a simple topology with high reliability and efficiency because of high power consumption, but control algorithm is more complex because of its power convert main circuit a new strategy is being developed. This paper describes a method for maximum power point tracking (MPPT) in the single-stage and three single-phase PV grid-connected system. In the paper, the nonlinear output characteristics of the PV including I-V & P-V are obtained in changed solar insulations or temperature based on MATLAB, and the MPPT algorithm which is based on the P & O algorithm method, compared with Incremental Conductance, is also described, a dimensioning of the impedance adapter for better stabilization. A comparison SPWM and SVPWM control methods in the case of a grid connection applied to the electrical grid of Republic of Congo and their influences on the dynamic performance of the system and their impact in reducing the harmonic rate for better injection into the grid. The simulation model of three single-phase PV grid-connected system is built, and simulation results show the MPPT algorithm has excellent dynamic and static performances, which verifies the Incremental Conductance is effective for MPPT in the single-stage and three single-phase PV grid-connected system.
文摘This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does.
基金Project (No. 20576071) supported by the National Natural Science Foundation of China
文摘To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the filzzy logic control algorithm.
基金supported by National Natural Science Foundation of China(62263014)Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443).
文摘This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.
基金Supported by the Algerian Ministry of Scientific Research through a budget allocated to the LEPA Laboratory at the University of Science and Technology in Oran.
文摘A novel control strategy is introduced for tracking the maximum power point of a wind turbine coupled with a permanent magnet synchronous generator.In contrast to other control methods,this approach does not rely on an electrical actuator such as a rectifier or inverter.Instead,it uses a mechanical actuator—specifically,a speed multiplier—to ensure maximum power point(MPP)tracking.The selection of the optimal speed multiplication ratio enables the pursuit of the maximum power coefficient by adjusting the tip-speed ratio(𝜆)to its optimal value.This approach requires no learning time,only knowledge of the wind turbine and generator parameters,which are used for selecting or sizing the speed multiplier and for control purposes.The new approach is validated through simulation in Matlab/Simulink,incorporating a wind profile measured by our team over a 15-day period.The results demonstrate effective tracking of maximum power,achieving a power coefficient efficiency of 98.1%.Considering the measured variability of the wind,the overall energy efficiency over the 15 days reaches 99.16%.The approach is applied to a model of a low-power wind turbine designed for domestic applications.
基金supported in part by the National Key R&D Program of China(No.2021YFB1506904)the National Natural Science Foundation of China(No.51977111).
文摘The optimal torque(OT)method,which is preferred for its simplicity,is widely employed in maximum power point tracking(MPPT)control strategies for wind energy capture in wind turbine generators(WTGs).Based on the OT method,the decreased torque gain(DTG)method is developed to improve turbine acceleration through a reduction of the torque gain coefficient.However,the DTG method does not fully align with the acceleration performance required by wind turbines,which subsequently limits improvements in wind energy capture efficiency.To address these concerns,a novel MPPT control strategy is proposed,which introduces redefined torque curve and torque command conceptualized based on a higher-order function relative to rotor speed.Additionally,an adaptive algorithm for the periodic update of the torque command is suggested to better accommodate the variability of turbulent wind speeds,thus aiming to improve the wind energy capture efficiency.The effectiveness of the proposed MPPT control strategy is substantiated through the wind turbine simulator(WTS)-based experiments.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
文摘Artificial intelligence,machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking(MPPT)in solar systems.In the traditional MPPT strategies,following of worldwide Global Maximum Power Point(GMPP)under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions.The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions(PSC).Still the selection of an efficient learning based MPPT is complex because each model has its advantages and drawbacks.Recently,Meta-heuristic algorithm based Learning techniques have provided better tracking efficiency but still exhibit dull performances under PSC.This work represents an excellent optimization based on Spotted Hyena Enabled Reliable BAT(SHERB)learning models,SHERB-MPPT integrated with powerful extreme learning machines to identify the GMPP with fast convergence,low steady-state oscillations,and good tracking efficiency.Extensive testing using MATLAB-SIMULINK,with 50000 data combinations gathered under partial shade and normal settings.As a result of simulations,the proposed approach offers 99.7%tracking efficiency with a slower convergence speed.To demonstrate the predominance of the proposed system,we have compared the performance of the system with other hybrid MPPT learning models.Results proved that the proposed cross breed MPPT model had beaten different techniques in recognizing GMPP viably under fractional concealing conditions.