期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Estimation under a Finite Mixture of Exponentiated Exponential Components Model and Balanced Square Error Loss 被引量:1
1
作者 Essam K. AL-Hussaini Mohamed Hussein 《Open Journal of Statistics》 2012年第1期28-38,共11页
By exponentiating each of the components of a finite mixture of two exponential components model by a positive parameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, bas... By exponentiating each of the components of a finite mixture of two exponential components model by a positive parameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, based on square error loss function and objective prior, are used to obtain estimators based on balanced square error loss function for the parameters, survival and hazard rate functions of a mixture of two exponentiated exponential components model. Approximate interval estimators of the parameters of the model are obtained. 展开更多
关键词 Finite Mixtures Exponentiated EXPONENTIAL Distribution maximum Likelihood estimation Bayes estimation square ERROR and BALANCED square ERROR LOSS Functions Objective Prior
在线阅读 下载PDF
Maximum Likelihood Estimation of the Identification Parameters and Its Correction 被引量:2
2
作者 An Kai, Ma Jiaguang & Fu Chengyu Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610041, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期31-38,共8页
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of ... By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods. 展开更多
关键词 Probability density Noise Least square methods Corrector of maximum likelihood estimation.
在线阅读 下载PDF
Estimation for constant-stress accelerated life test from generalized half-normal distribution 被引量:5
3
作者 Liang Wang Yimin Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期810-816,共7页
In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fi... In the constant-stress accelerated life test, estimation issues are discussed for a generalized half-normal distribution under a log-linear life-stress model. The maximum likelihood estimates with the corresponding fixed point type iterative algorithm for unknown parameters are presented, and the least square estimates of the parameters are also proposed. Meanwhile, confidence intervals of model parameters are constructed by using the asymptotic theory and bootstrap technique. Numerical illustration is given to investigate the performance of our methods. 展开更多
关键词 accelerated life test maximum likelihood estimation least square method bootstrap technique asymptotic distribution
在线阅读 下载PDF
Stochastic Restricted Maximum Likelihood Estimator in Logistic Regression Model 被引量:2
4
作者 Varathan Nagarajah Pushpakanthie Wijekoon 《Open Journal of Statistics》 2015年第7期837-851,共15页
In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression ... In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression model with exact linear restrictions. However, there are some situations, where the linear restrictions are stochastic. In this paper, we propose a Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model with stochastic linear restrictions to overcome this issue. Moreover, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Restricted Maximum Likelihood Estimator (RMLE), Ridge Type Logistic Estimator(LRE), Liu Type Logistic Estimator(LLE), and SRMLE for the logistic regression model by using Scalar Mean Squared Error (SMSE). 展开更多
关键词 LOGISTIC Regression MULTICOLLINEARITY Stochastic RESTRICTED maximum LIKELIHOOD estimATOR SCALAR Mean squared Error
在线阅读 下载PDF
Estimation of the Stress-Strength Reliability for Exponentiated Pareto Distribution Using Median and Ranked Set Sampling Methods 被引量:2
5
作者 Amer Ibrahim Al-Omari Ibrahim M.Almanjahie +1 位作者 Amal S.Hassan Heba F.Nagy 《Computers, Materials & Continua》 SCIE EI 2020年第8期835-857,共23页
In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estim... In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods. 展开更多
关键词 Stress-Strength model ranked set sampling median ranked set sampling maximum likelihood estimation mean square error
在线阅读 下载PDF
On the Estimation of a Univariate Gaussian Distribution: A Comparative Approach 被引量:1
6
作者 Cliff R. Kikawa Michael Y. Shatalov +1 位作者 Petrus H. Kloppers Andrew C. Mkolesia 《Open Journal of Statistics》 2015年第5期445-454,共10页
Estimation of the unknown mean, μ and variance, σ2 of a univariate Gaussian distribution given a single study variable x is considered. We propose an approach that does not require initialization of the sufficient u... Estimation of the unknown mean, μ and variance, σ2 of a univariate Gaussian distribution given a single study variable x is considered. We propose an approach that does not require initialization of the sufficient unknown distribution parameters. The approach is motivated by linearizing the Gaussian distribution through differential techniques, and estimating, μ and σ2 as regression coefficients using the ordinary least squares method. Two simulated datasets on hereditary traits and morphometric analysis of housefly strains are used to evaluate the proposed method (PM), the maximum likelihood estimation (MLE), and the method of moments (MM). The methods are evaluated by re-estimating the required Gaussian parameters on both large and small samples. The root mean squared error (RMSE), mean error (ME), and the standard deviation (SD) are used to assess the accuracy of the PM and MLE;confidence intervals (CIs) are also constructed for the ME estimate. The PM compares well with both the MLE and MM approaches as they all produce estimates whose errors have good asymptotic properties, also small CIs are observed for the ME using the PM and MLE. The PM can be used symbiotically with the MLE to provide initial approximations at the expectation maximization step. 展开更多
关键词 Mean squared ERROR Method of MOMENTS maximum LIKELIHOOD estimation Regression COEFFICIENTS
暂未订购
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
7
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
在线阅读 下载PDF
Parameter Estimation for the NEAR(p) Model
8
作者 赵世舜 朱复康 王德辉 《Northeastern Mathematical Journal》 CSCD 2005年第4期383-386,共4页
As to the acronym NEAR(p), it means “New Exponential Autoregressive Process of order p”. The NEAR(p) model is defined by
关键词 AUTOREGRESSIVE conditional least square estimation EXPONENTIAL maximum quasi-likelihood estimation NEAR(p) model weighted conditional least square estimation
在线阅读 下载PDF
Carrier frequency offset estimation for a generalized OFDMA uplink
9
作者 Zhang Wei Wang Jing Chen Xiang 《High Technology Letters》 EI CAS 2011年第4期333-338,共6页
A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is... A residual carrier frequency offset (CFO) estimation scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems. Multiple access interference caused by CFOs in the uplink is investigated, as it severely affects the performance of a classical maximum likelihood (ML) frequency estimator. By the use of the estimated CFOs of the active users, the linear maximum mean square error (LMMSE) equalization is performed before the ML frequency estimator for the interference cancellation, which can help to sufficiently improve the estimation accuracy for the residual CFO of the incoming user. Analysis and simulations show that the modified ML estimator provides a tradeoff between estimation accuracy and computational complexity caused by the LMMSE interference cancellation, and the proposed method allows OFDMA systems flexibly allocating subcarriers to users. 展开更多
关键词 OFDMA upliak frequency synchronization maximum likelihood (ML) frequency estimator linear minhnum mean square error (LMMSE) equalization generalized carrier-allocation scheme (GCAS)
在线阅读 下载PDF
A plotless density estimator with a Norton-Rice distribution for ordered distances
10
作者 Steen Magnussen 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2385-2401,共17页
A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample... A Norton-Rice distribution(NRD)is a versatile,flexible distribution for k ordered distances from a random location to the k nearest objects.In a context of plotless density estimation(PDE)with n randomly chosen sample locations,and distances measured to the k=6 nearest objects,the NRD provided a good fit to distance data from seven populations with a census of forest tree stem locations.More importantly,the three parameters of a NRD followed a simple trend with the order(1,…,6)of observed distances.The trend is quantified and exploited in a proposed new PDE through a joint maximum likelihood estimation of the NRD parameters expressed as a functions of distance order.In simulated probability sampling from the seven populations,the proposed PDE had the lowest overall bias with a good performance potential when compared to three alternative PDEs.However,absolute bias increased by 0.8 percentage points when sample size decreased from 20 to 10.In terms of root mean squared error(RMSE),the new proposed estimator was at par with an estimator published in Ecology when this study was wrapping up,but otherwise superior to the remaining two investigated PDEs.Coverage of nominal 95%confidence intervals averaged 0.94 for the new proposed estimators and 0.90,0.96,and 0.90 for the comparison PDEs.Despite tangible improvements in PDEs over the last decades,a globally least biased PDE remains elusive. 展开更多
关键词 Fixed-count sampling Spatial point pattern Distance distributions Forest inventory Joint maximum likelihood estimation BIAS Root mean squared error COVERAGE
在线阅读 下载PDF
A Comparison of Four Methods of Estimating the Scale Parameter for the Exponential Distribution
11
作者 Huda M. Alomari 《Journal of Applied Mathematics and Physics》 2023年第10期2838-2847,共10页
In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likeliho... In this paper, the estimators of the scale parameter of the exponential distribution obtained by applying four methods, using complete data, are critically examined and compared. These methods are the Maximum Likelihood Estimator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Function (BEN) and the Composite LINEX Loss Function (BCL). The performance of these four methods was compared based on three criteria: the Mean Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). Using Monte Carlo simulation based on relevant samples, the comparisons in this study suggest that the Bayesian method is better than the maximum likelihood estimator with respect to the estimation of the parameter that offers the smallest values of MSE, AIC, and BIC. Confidence intervals were then assessed to test the performance of the methods by comparing the 95% CI and average lengths (AL) for all estimation methods, showing that the Bayesian methods still offer the best performance in terms of generating the smallest ALs. 展开更多
关键词 Bayes estimator maximum Likelihood estimator Mean squared Error (MSE) Akaike Information Criterion (AIC) Bayesian Information Criterion (BIC)
在线阅读 下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
12
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY maximum LIKELIHOOD estimation LINEAR Regression Model Log-Normal Distribution Weighed LEAST-squareS Regression
暂未订购
基于CKMC-SCKF的三轴分布式电驱动重型车辆状态估计
13
作者 耿国庆 庄盛茹 +1 位作者 王波 徐兴 《重庆理工大学学报(自然科学)》 北大核心 2025年第11期12-20,共9页
为更准确地判断多轴分布式电驱动重型车辆在非高斯噪声环境行驶过程中的状态变化,提出一种基于柯西核最大相关熵的均方根容积卡尔曼滤波(CKMC-SCKF)算法。所提算法将柯西核最大相关熵准则作为车辆状态估计优化标准,基于对数相似性整合... 为更准确地判断多轴分布式电驱动重型车辆在非高斯噪声环境行驶过程中的状态变化,提出一种基于柯西核最大相关熵的均方根容积卡尔曼滤波(CKMC-SCKF)算法。所提算法将柯西核最大相关熵准则作为车辆状态估计优化标准,基于对数相似性整合核自适应滤波器,通过固定点迭代来更新目标估计状态、动态调整误差协方差矩阵,从而有效提高状态估计有效数据的占比,以改善滤波器的鲁棒性。构建9自由度三轴分布式电驱动重型车辆动力学模型,基于Trucksim和Matlab建立联合仿真平台,对横摆角速度、质心侧偏角及纵向速度进行估计,并验证了所提出的CKMC-SCKF在不同工况下的准确性和可靠性。结果表明,相较于高斯核最大相关熵均方根容积卡尔曼滤波与传统容积卡尔曼滤波算法,该方法在非高斯噪声环境中具有较高的估计精度。 展开更多
关键词 柯西核函数 最大相关熵 均方根容积卡尔曼滤波 车辆状态估计
在线阅读 下载PDF
极端次序统计量在均匀分布统计推断中的应用
14
作者 姜培华 刘文震 张小敏 《高师理科学刊》 2025年第6期100-107,共8页
参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估... 参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估计,并讨论了不同估计量的有效性以及在均方误差意义下的最优估计问题。所用的处理方法和技巧,对于培养学生的发散思维,提高学生的创新能力是非常有益的。 展开更多
关键词 最大次序统计量 最小次序统计量 点估计 有效性 均方误差.
在线阅读 下载PDF
一种面向光子计数器的改进加权迭代最小二乘法设计
15
作者 李凤 何建军 +1 位作者 杨圣红 郭小江 《现代电子技术》 北大核心 2025年第22期76-80,共5页
针对采用传统最小二乘法在拟合光子计数器数据时普遍存在偏差增大以及噪声干扰加剧的问题,提出一种基于线性参数的改进加权迭代最小二乘法(L-IWLS),旨在更精准、高效地处理光子计数数据。该方法不仅继承了传统最小二乘法在数据处理上的... 针对采用传统最小二乘法在拟合光子计数器数据时普遍存在偏差增大以及噪声干扰加剧的问题,提出一种基于线性参数的改进加权迭代最小二乘法(L-IWLS),旨在更精准、高效地处理光子计数数据。该方法不仅继承了传统最小二乘法在数据处理上的优势,还针对其不足进行了优化,引入了加权迭代机制,通过对每个数据点赋予不同的权重,有效降低了噪声对拟合结果的影响。同时,利用线性参数的特性提高了拟合的稳健性和准确性,从而更加适用于光子分布数据的拟合场景。实验结果表明,在统计模型参数为线性函数的场景下,L-IWLS方法相较于传统的最大似然估计(ML)以及标准的加权迭代最小二乘法(IWLS),展现出了更快的收敛速度。在实际应用中,L-IWLS能够更快地达到稳定的拟合结果,在偏差克服和适用性方面的优势显著,为光子计数数据的精确处理提供了一种新的、更为有效的数学工具。 展开更多
关键词 光子计数 最小二乘法 加权迭代 最大似然估计 光子分布 统计模型 最佳线性无偏估计
在线阅读 下载PDF
一种应用于心电监护设备上的T波终点识别方法
16
作者 傅莹 李阳 《科技创新与应用》 2025年第36期22-25,共4页
T波终点识别是心电信号特征提取中的重要组成部分,但是由于T波部分容易受到噪声的干扰,再加上T波形态的变化使得T波终点识别相对比较困难。为了能准确快速地识别T波终点,该文以最小二乘估计为基础,首先快速定位T波顶点,再对T波后面的等... T波终点识别是心电信号特征提取中的重要组成部分,但是由于T波部分容易受到噪声的干扰,再加上T波形态的变化使得T波终点识别相对比较困难。为了能准确快速地识别T波终点,该文以最小二乘估计为基础,首先快速定位T波顶点,再对T波后面的等电位线进行修正,得到符合实际情况的等电位线,最后根据等电位线与T波最大陡线的交点求得T波终点的参考点,并对参考点位置进行调整得到T波终点。由于最小二乘估计运算量小,算法的运算速度得到提高且具有一定的抗噪性,利用算法对QT数据库进行试验,T波检出率与T波终点识别精度都取得了很好的效果。 展开更多
关键词 最小二乘估计 等电位线 最大陡线 心电信号 抗嗓性
在线阅读 下载PDF
一种基于轨迹灵敏度的发电机参数抗差估计法 被引量:9
17
作者 陈建华 吴文传 +2 位作者 张伯明 孙宏斌 汪德星 《电力系统自动化》 EI CSCD 北大核心 2010年第23期21-24,41,共5页
提出了一种基于轨迹灵敏度的发电机参数抗差估计方法,可应用于发电机参数在线辨识与仿真模型校正。首先,利用轨迹灵敏度辨识出对电力系统动态过程影响较大的主导参数集作为待估计参数集。然后,基于相量测量单元(PMU)量测数据,采用基于... 提出了一种基于轨迹灵敏度的发电机参数抗差估计方法,可应用于发电机参数在线辨识与仿真模型校正。首先,利用轨迹灵敏度辨识出对电力系统动态过程影响较大的主导参数集作为待估计参数集。然后,基于相量测量单元(PMU)量测数据,采用基于轨迹灵敏度的逐次逼近方法对该模型进行求解,可以快速得到最优估计结果。另外,将一种具有很强抗差能力的最大指数平方估计模型引入到参数估计中,该估计模型具有自动压缩坏数据影响的能力。新英格兰系统的算例表明,所提出的方法有效,且具有很强的抗差能力。 展开更多
关键词 轨迹灵敏度 参数估计 轨迹拟合 最大指数平方估计 发电机
在线阅读 下载PDF
产品可靠性的Bootstrap回归统计分析方法 被引量:14
18
作者 钱萍 陈文华 +2 位作者 李星军 高亮 马子魁 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第11期2549-2554,共6页
针对产品可靠性统计分析中,经常面临的小样本问题或误差项分布不明确的问题,将Bootstrap方法引入到产品可靠性的回归统计分析,提出了基于极大似然-最小二乘估计(ML-LSE)二步法的产品可靠性Bootstrap统计分析方法;同时通过对Bootstrap估... 针对产品可靠性统计分析中,经常面临的小样本问题或误差项分布不明确的问题,将Bootstrap方法引入到产品可靠性的回归统计分析,提出了基于极大似然-最小二乘估计(ML-LSE)二步法的产品可靠性Bootstrap统计分析方法;同时通过对Bootstrap估计值进行纠偏处理,提高了小样本条件下或误差项分布不明确时产品可靠性的统计精度,并求得某型电连接器在正常应力水平下可靠性特征值的区间估计值。统计模拟的结果表明,经纠偏处理后的Bootstrap回归统计分析方法,所得产品可靠性特征值的估计精度能满足置信度的要求。 展开更多
关键词 极大似然-最小二乘估计 回归分析 Bootstrap估计 可靠性统计
在线阅读 下载PDF
基于计算机视觉的电测仪表自动识别方法的研究 被引量:15
19
作者 赵书涛 李宝树 +2 位作者 贾秀芳 岳国义 苑津莎 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第z1期606-607,共2页
研究图像处理技术在仪表自动化校验中的应用方案,详细介绍了基于最大似然估计的最小二乘拟合方法来确定指针和刻度线的参数。利用计算机视觉识别技术、信息处理技术和智能仪器设计原理,可从根本上解决电测仪表快速、准确的自动校验问题。
关键词 计算机视觉识别 指针识别 最大似然估计 最小二乘拟合
在线阅读 下载PDF
基于谱模拟技术的混合相位地震子波估计方法 被引量:25
20
作者 李鲲鹏 李衍达 +1 位作者 张学工 许建华 《石油物探》 EI CSCD 2001年第2期21-28,共8页
针对现有的地震子波振幅谱模型的不足提出了新的振幅谱模型及其估计方法。介绍了子波的Z变换在单位园上无零点和子波自相关函数已知的条件下混合相位地震子波估计的方法原理和判别准则 ,并在此基础上提出了基于地震子波振幅谱模拟技术... 针对现有的地震子波振幅谱模型的不足提出了新的振幅谱模型及其估计方法。介绍了子波的Z变换在单位园上无零点和子波自相关函数已知的条件下混合相位地震子波估计的方法原理和判别准则 ,并在此基础上提出了基于地震子波振幅谱模拟技术的混合相位地震子波估计方法。合成和实际数据处理结果均表明 。 展开更多
关键词 谱模拟 混合相位 地震子波估计 最小二乘法 最大熵 地震勘探
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部