Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that ex...Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.展开更多
Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and...Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical approximation approaches have been most successfully developed to solve the problems of maximum likelihood parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight the challenges and key issues and encourage the researches for further progress.展开更多
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri...Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.展开更多
基金the National Natural Science Foundation of China (No.60603088)
文摘Explaining the causes of infeasibility of Boolean formulas has many practical applications in electronic design automation and formal verification of hardware.Furthermore,a minimum explanation of infeasibility that excludes all irrelevant information is generally of interest.A smallest-cardinality unsatisfiable subset called a minimum unsatisfiable core can provide a succinct explanation of infea-sibility and is valuable for applications.However,little attention has been concentrated on extraction of minimum unsatisfiable core.In this paper,the relationship between maximal satisfiability and mini-mum unsatisfiability is presented and proved,then an efficient ant colony algorithm is proposed to derive an exact or nearly exact minimum unsatisfiable core based on the relationship.Finally,ex-perimental results on practical benchmarks compared with the best known approach are reported,and the results show that the ant colony algorithm strongly outperforms the best previous algorithm.
文摘Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical approximation approaches have been most successfully developed to solve the problems of maximum likelihood parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight the challenges and key issues and encourage the researches for further progress.
文摘Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.