Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton m...Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.展开更多
Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with...Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.展开更多
基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流...基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流器、电压源型换流器等直流输电技术的功率特性差异。针对CLCC可控换流的技术特点,提出一种基于最大触发角提升的CLCC优化控制方法,改善了CLCC的故障响应特性,提升了受端电网交流电压的恢复速度。最后,基于PSD-PSModel电力系统仿真软件,建立送受端电网机电暂态和CLCC直流电磁暂态的混合仿真模型,验证理论分析的准确性和优化控制的有效性。展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 41931181 and 42075048]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2022075]。
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(No.2016OPR0107)the National Natural Science Foundation of China(No.41806013)。
文摘Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.
基金the financial support from National Natural Science Foundation of China (Grants Nos.12325203,91963117,and 11921002)。
文摘Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.
文摘基于可控电网换相型换流器(controllable line commutated converter,CLCC)的高压直流输电技术避免了常规直流换相失败问题,为高压直流馈入电网提供了崭新途径。文章揭示CLCC高压直流输电系统的故障响应机理,对比CLCC与电网换相型换流器、电压源型换流器等直流输电技术的功率特性差异。针对CLCC可控换流的技术特点,提出一种基于最大触发角提升的CLCC优化控制方法,改善了CLCC的故障响应特性,提升了受端电网交流电压的恢复速度。最后,基于PSD-PSModel电力系统仿真软件,建立送受端电网机电暂态和CLCC直流电磁暂态的混合仿真模型,验证理论分析的准确性和优化控制的有效性。