Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curva...Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curvature flow, certain subcritical quantities concerning the second fundamental form blow up. This result not only generalizes a result of Le-Sesum and Xu-Ye-Zhao, but also extends the latest work of Le in the Euclidean case展开更多
基金supported by the NSFC(11101267,11271132)the Innovation Program of Shanghai Municipal Education Commission(13YZ087)the Science and Technology Program of Shanghai Maritime University(20120061)
文摘Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curvature flow, certain subcritical quantities concerning the second fundamental form blow up. This result not only generalizes a result of Le-Sesum and Xu-Ye-Zhao, but also extends the latest work of Le in the Euclidean case