期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mining Maximal Frequent Patterns in a Unidirectional FP-tree 被引量:1
1
作者 宋晶晶 刘瑞新 +1 位作者 王艳 姜保庆 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期105-109,共5页
Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model ... Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space. 展开更多
关键词 data mining frequent pattern the maximal frequent pattern Unid _ FP-tree conditional Unid _ FP-tree.
在线阅读 下载PDF
An efficient and resilience linear prefix approach for mining maximal frequent itemset using clustering
2
作者 M.Sinthuja S.Pravinthraja +3 位作者 B K Dhanalakshmi H L Gururaj Vinayakumar Ravi G Jyothish Lal 《Journal of Safety Science and Resilience》 2025年第1期93-104,共12页
The numerous volumes of data generated every day necessitate the deployment of new technologies capable of dealing with massive amounts of data efficiently.This is the case with Association Rules,a tool for unsupervis... The numerous volumes of data generated every day necessitate the deployment of new technologies capable of dealing with massive amounts of data efficiently.This is the case with Association Rules,a tool for unsupervised data mining that extracts information in the form of IF-THEN patterns.Although various approaches for extracting frequent itemset(prior step before mining association rules)in extremely large databases have been presented,the high computational cost and shortage of memory remain key issues to be addressed while processing enormous data.The objective of this research is to discover frequent itemset by using clustering for preprocessing and adopting the linear prefix tree algorithm for mining the maximal frequent itemset.The performance of the proposed CL-LP-MAX-tree was evaluated by comparing it with the existing FP-max algorithm.Experimentation was performed with the three different standard datasets to record evidence to prove that the proposed CL-LP-MAX-tree algorithm outperform the existing FP-max algorithm in terms of runtime and memory consumption. 展开更多
关键词 CLUSTERING Data mining frequent itemset mining Linear prefix tree maximal frequent itemset mining
原文传递
New algorithm of mining frequent closed itemsets
3
作者 张亮 任永功 付玉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期335-338,共4页
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory an... A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems. This algorithm maps the transaction database by using a Hash table,gets the support of all frequent itemsets through operating the Hash table and forms a lexicographic subset tree including the frequent itemsets.Efficient pruning methods are used to get the FC-tree including all the minimum frequent closed itemsets through processing the lexicographic subset tree.Finally,frequent closed itemsets are generated from minimum frequent closed itemsets.The experimental results show that the mapping transaction database is introduced in the algorithm to reduce time consumption and to improve the efficiency of the program.Furthermore,the effective pruning strategy restrains the number of candidates,which saves space.The results show that the algorithm is effective. 展开更多
关键词 frequent itemsets frequent closed itemsets minimum frequent closed itemsets maximal frequent closed itemsets frequent closed pattern tree
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部