期刊文献+
共找到4,060篇文章
< 1 2 203 >
每页显示 20 50 100
New scale factor correction scheme for CORDIC algorithm 被引量:1
1
作者 戴志生 张萌 +1 位作者 高星 汤佳健 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期313-315,共3页
To overcome the drawbacks such as irregular circuit construction and low system throughput that exist in conventional methods, a new factor correction scheme for coordinate rotation digital computer( CORDIC) algorit... To overcome the drawbacks such as irregular circuit construction and low system throughput that exist in conventional methods, a new factor correction scheme for coordinate rotation digital computer( CORDIC) algorithm is proposed. Based on the relationship between the iteration formulae, a new iteration formula is introduced, which leads the correction operation to be several simple shifting and adding operations. As one key part, the effects caused by rounding error are analyzed mathematically and it is concluded that the effects can be degraded by an appropriate selection of coefficients in the iteration formula. The model is then set up in Matlab and coded in Verilog HDL language. The proposed algorithm is also synthesized and verified in field-programmable gate array (FPGA). The results show that this new scheme requires only one additional clock cycle and there is no change in the elementary iteration for the same precision compared with the conventional algorithm. In addition, the circuit realization is regular and the change in system throughput is very minimal. 展开更多
关键词 coordinate rotation digital computer (CORDIC) algorithm scale factor correction field-programmable gate array (FPGA)
在线阅读 下载PDF
Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process 被引量:6
2
作者 Hamid Reza Pourghasemi Nitheshnirmal Sadhasivam +1 位作者 Narges Kariminejad Adrian L.Collins 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2207-2219,共13页
This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linea... This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion. 展开更多
关键词 Machine learning algorithm Gully erosion Random forest Controlling factors Variable importance
在线阅读 下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:4
3
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 Multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
原文传递
Optimal fuzzy PID controller with adjustable factors based on flexible polyhedron search algorithm 被引量:2
4
作者 谭冠政 肖宏峰 王越超 《Journal of Central South University of Technology》 EI 2002年第2期128-133,共6页
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab... A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes. 展开更多
关键词 OPTIMAL fuzzy inference PID controller adjustable factor flexible polyhedron search algorithm intelligent artificial leg
在线阅读 下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:2
5
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
在线阅读 下载PDF
A GENERAL IN-PLACE AND IN-ORDER PRIME FACTOR FFT ALGORITHM
6
作者 王中德 《Journal of Electronics(China)》 1991年第1期60-67,共8页
Starting from an index mapping for one to multi-dimensions, a general in-placeand in-order prime factor FFT algorithm is proposed in this paper. In comparing with existingprime factor FFT algorithms, this algorithm sa... Starting from an index mapping for one to multi-dimensions, a general in-placeand in-order prime factor FFT algorithm is proposed in this paper. In comparing with existingprime factor FFT algorithms, this algorithm saves about half of the required storage capacityand possesses a higher efficiency. In addition, this algorithm can easily implement the DFT andIDFT in a single subroutine, 展开更多
关键词 Fast algorithm DISCRETE FOURIER TRANSFORM FFT PRIME factor algorithm
在线阅读 下载PDF
A novel trilinear decomposition algorithm:Three-dimension non-negative matrix factorization
7
作者 Hong Tao Gao Dong Mei Dai Tong Hua Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第4期495-498,共4页
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos... Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics. 展开更多
关键词 Three-dimension non-negative matrix factorization NMF3 algorithm Data decomposition CHEMOMETRICS
在线阅读 下载PDF
Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-C: Constructive Algorithms for Canonical Factorizations and a Special Class of Asymptotic Scales
8
作者 Antonio Granata 《Advances in Pure Mathematics》 2015年第8期503-526,共24页
This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting... This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition. 展开更多
关键词 ASYMPTOTIC EXPANSIONS CANONICAL factorIZATIONS of Disconjugate OPERATORS algorithms for CANONICAL factorIZATIONS CHEBYSHEV ASYMPTOTIC Scales
在线阅读 下载PDF
Kernel Factor Analysis Algorithm with Varimax
9
作者 夏国恩 金炜东 张葛祥 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期394-399,共6页
Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle com... Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition. 展开更多
关键词 Kernel factor analysis Kernel principal component analysis Support vector machine Varimax algorithm Handwritten digit recognition
在线阅读 下载PDF
An FPGA-based LDPC decoder with optimized scale factor of NMS decoding algorithm
10
作者 LI Jinming ZHAGN Pingping +1 位作者 WANG Lanzhu WANG Guodong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期398-406,共9页
Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm wi... Considering that the hardware implementation of the normalized minimum sum(NMS)decoding algorithm for low-density parity-check(LDPC)code is difficult due to the uncertainty of scale factor,an NMS decoding algorithm with variable scale factor is proposed for the near-earth space LDPC codes(8177,7154)in the consultative committee for space data systems(CCSDS)standard.The shift characteristics of field programmable gate array(FPGA)is used to optimize the quantization data of check nodes,and finally the function of LDPC decoder is realized.The simulation and experimental results show that the designed FPGA-based LDPC decoder adopts the scaling factor in the NMS decoding algorithm to improve the decoding performance,simplify the hardware structure,accelerate the convergence speed and improve the error correction ability. 展开更多
关键词 LDPC code NMS decoding algorithm variable scale factor QUANTIZATION
在线阅读 下载PDF
Investigation into the Computational Costs of Using Genetic Algorithm and Simulated Annealing for the Optimization of Explicit Friction Factor Models
11
作者 Sunday Boladale Alabi Abasiyake Uku Ekpenyong 《Journal of Materials Science and Chemical Engineering》 CAS 2022年第12期1-9,共9页
Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approac... Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime. 展开更多
关键词 Genetic algorithm Simulated Annealing Global Optimization Explicit Friction factor Computational Cost
在线阅读 下载PDF
Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm
12
作者 初红艳 Yang Junjing Cai Ligang 《High Technology Letters》 EI CAS 2015年第1期15-21,共7页
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t... In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste. 展开更多
关键词 offset printing colour quality control impact factor fuzzy control genetic algorithm
在线阅读 下载PDF
Collaboration Filtering Recommendation Algorithm Based on the Latent Factor Model and Improved Spectral Clustering
13
作者 Xiaolan Xie Mengnan Qiu 《国际计算机前沿大会会议论文集》 2019年第1期98-100,共3页
Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In... Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms. 展开更多
关键词 COLLABORATION FILTERING RECOMMENDATION algorithm LATENT factor Model CLUSTER validity index SPECTRAL clustering
在线阅读 下载PDF
Effects of T-Factor on Quantum Annealing Algorithms for Integer Factoring Problem
14
作者 Zhiqi Liu Shihui Zheng +2 位作者 Xingyu Yan Ping Pan Licheng Wang 《Journal of Quantum Computing》 2023年第1期41-54,共14页
The hardness of the integer factoring problem(IFP)plays a core role in the security of RSA-like cryptosystems that are widely used today.Besides Shor’s quantum algorithm that can solve IFP within polynomial time,quan... The hardness of the integer factoring problem(IFP)plays a core role in the security of RSA-like cryptosystems that are widely used today.Besides Shor’s quantum algorithm that can solve IFP within polynomial time,quantum annealing algorithms(QAA)also manifest certain advantages in factoring integers.In experimental aspects,the reported integers that were successfully factored by using the D-wave QAA platform are much larger than those being factored by using Shor-like quantum algorithms.In this paper,we report some interesting observations about the effects of QAA for solving IFP.More specifically,we introduce a metric,called T-factor that measures the density of occupied qubits to some extent when conducting IFP tasks by using D-wave.We find that T-factor has obvious effects on annealing times for IFP:The larger of T-factor,the quicker of annealing speed.The explanation of this phenomenon is also given. 展开更多
关键词 Quantum annealing algorithm integer factorization problem T-factor D-WAVE
在线阅读 下载PDF
基于Factored Frontier算法的动态贝叶斯网络灵敏性分析方法 被引量:2
15
作者 姚宏亮 袁正 王浩 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期412-420,共9页
贝叶斯网络的灵敏性分析是研究模型局部参数或证据微小变化对于目标结点所产生的影响,以发现复杂系统的重要参数和结构.然而对于动态贝叶斯网络,当前还没有一种有效的灵敏性分析算法.针对隐马尔科夫模型(HMM)灵敏性分方法不能用于分析... 贝叶斯网络的灵敏性分析是研究模型局部参数或证据微小变化对于目标结点所产生的影响,以发现复杂系统的重要参数和结构.然而对于动态贝叶斯网络,当前还没有一种有效的灵敏性分析算法.针对隐马尔科夫模型(HMM)灵敏性分方法不能用于分析动态贝叶斯网络灵敏性和灵敏性分析计算复杂性高的问题,提出一种可有效处理动态贝叶斯网络灵敏性分析算法(SA_FF).SA_FF算法利用FF近似推理算法(Factored Frontier)思想求解动态贝叶斯网络的灵敏性函数,通过对马尔可夫毯所构成边界(Frontier)的动态推理建立参数与目标结点条件概率分布之间的函数关系;SA_FF算法在灵敏性函数推理计算过程中,通过对局部性边界的边缘化进行信息传播,不需要对模型的联合概率分布进行更新,显著提高了计算的效率,且可用于多参数灵敏性分析,但会引入一定的误差;进而,通过误差分析证明所引入的误差是有界的.最后,通过实例计算的比较和分析显示SA_FF算法的有效性. 展开更多
关键词 动态贝叶斯网络 因式边界算法 灵敏性分析 SA_FF算法
在线阅读 下载PDF
The inversion of anelastic coefficient, source parameters and site respond using genetic algorithm 被引量:7
16
作者 刘杰 郑斯华 黄玉龙 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期226-232,共7页
关键词 source parameter site respond quality factor genetic algorithm
在线阅读 下载PDF
Intervention decision-making in MAV/UAV cooperative engagement based on human factors engineering 被引量:10
17
作者 ZHONG Yun YAO Peiyang +1 位作者 WAN Lujun YANG Juan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期530-538,共9页
Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human f... Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified. 展开更多
关键词 manned/unmanned aerial vehicle(MAV/UAV) intervention decision-making human factors engineering structural description K-best algorithm variable neighborhood search algorithm
在线阅读 下载PDF
Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm 被引量:8
18
作者 朱剑锋 陈昌富 《Journal of Central South University》 SCIE EI CAS 2014年第1期387-397,共11页
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and... A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering. 展开更多
关键词 SLOPE STABILITY genetic algorithm tabu search algorithm safety factor
在线阅读 下载PDF
Opposition-Based Firefly Algorithm for Earth Slope Stability Evaluation 被引量:5
19
作者 Mohammad KHAJEHZADEH Mohd Raihan TAHA Mahdiyeh ESLAMI 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期713-724,共12页
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning... This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm. 展开更多
关键词 firefly algorithm opposition based learning safety factor slope stability
在线阅读 下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
20
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model Particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON Seepage pressure Mutation factor Piezometric level
在线阅读 下载PDF
上一页 1 2 203 下一页 到第
使用帮助 返回顶部