Chlorinated paraffins(SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work...Chlorinated paraffins(SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion(MSPD) was developed for the analysis of short-chain CPs(SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry(GC-ECNI-LRMS) and gas chromatography–quadrupole time-of-flight mass spectrometry(GC–QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent,sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test.Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane(7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC–QTOF-HRMS, and the corresponding relative standard deviations were10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8 ng/g(dry weight, dw) and 19.2 ng/g(dw) as measured by GC-ECNI-LRMS and GC–QTOF-HRMS,respectively. The concentrations of SCCPs in four human placentas were in the range of展开更多
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process...The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint.展开更多
<strong>Objective:</strong> For materials science and generally, for long-term operation of work-pieces in industry the significant role is attributed to dependence of macro-mechanical properties of consol...<strong>Objective:</strong> For materials science and generally, for long-term operation of work-pieces in industry the significant role is attributed to dependence of macro-mechanical properties of consolidated body on crystalline phase composition, its dimensions, form, distribution in matrix and the form factor. While working in responsible fields of technology of ceramics and ceramic composites the above referred properties are attributed extremely great role with the view of durability and endurance at the terms of heavy mechanical loads. For description of the resistance of any concrete type work-piece, the crystalline phase plays the greatest role in mechanical strength or deformation of any material. It plays the important role in correlative explanation of materials mechanics and matrix properties. In our case, in the process of destruction of ceramic materials and composites, which will give us exhaustive response to the role of macro- and micro-mechanical properties of materials, the role of a macro- and micro-structural component, that is, of crystalline phase in the process of transition of stable state of materials into meta-stable state is extremely big. Our study aims to develop a formula of dependence of macro-mechanical properties of ceramic and ceramic composites on crystalline phase, the most powerful component of their structure, which will enable theorists and practitioners to select and develop technologies and technological processes correctly. <strong>Method:</strong> On the basis of the study of micro- and macro-mechanical properties of ceramics and ceramic composites and the morphology of crystalline phase and the analysis of the study we determined and created parameters of the formula. <strong>Results:</strong> The formula covers macro-mechanical properties, that is when the work-piece is thoroughly destructed: mechanic at bending at three and four-point load, mechanic at contraction;among morphological characteristics: composition of crystalline phase and their spreading in matrix, their sizes, form factor;correlative dependence of the above listed properties. Absolutely new definition of a factor of spreading of crystalline phase in matrix is offered. <strong>Conclusion: </strong>The created formula is of consolidated nature and it can be used in technology of any ceramic material and ceramic composites. The formula will help practitioners to plan correctly and fulfill accurately all positions of technology of production of work-pieces, to carry out the most responsible thermal treatment process of technology of manufacture of work-pieces;to determine correlation between mechanical and matrix properties of materials.展开更多
Matrix solid-phase dispersion(MSPD) was developed for the extraction of four alkaloids, including aconitine, mesaconitine, hypaconitine and deoxyaconitine, from the roots ofAconitum kusnezoffii Reichb. The determina...Matrix solid-phase dispersion(MSPD) was developed for the extraction of four alkaloids, including aconitine, mesaconitine, hypaconitine and deoxyaconitine, from the roots ofAconitum kusnezoffii Reichb. The determination of the analyte was carried out by high performance liquid chromatography with UV detection. The alkaline alumina was used as sorbent. The mixture of acetonitrile and water was used as elution solvent. Several extraction parameters, such as type of sorbent, the ratio of sample to solid support material, type of the elution solvent and the volume of the elution solvent were tested. Mean recoveries ranged from 93.16% to 102.73%, with relative standard deviations from 0.27% to 4.17%. With the extraction efficiency and time expenditure taken into account, MSPD extraction should be a comparatively good method.展开更多
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
[ Objective] The study aimed to determine tebuconazole residue in apples and vegetables using matrix solid phase dispersion-gas chro- matography (MSPD-GC). [ Method] The effects of extraction and determination condi...[ Objective] The study aimed to determine tebuconazole residue in apples and vegetables using matrix solid phase dispersion-gas chro- matography (MSPD-GC). [ Method] The effects of extraction and determination conditions on the detection of tebuconazole left in apples and veg- etables were analyzed, and the optimum extraction conditions were determined. [ Result] The recovery rate of tebucenazole was the highest when the ratio of a sample to florisil dispersant was 1 : 4, and the mixture of hexane and acetone ( 1 : 1 ) with total volume of 8 ml was as the eluant. Under the optimum conditions, the relative standard deviation (RSD) of the method was 4.9% -7.6%, and the detection limit was 0.1 tJg/g, while the re- covery rate of tebuconazole changed from 86.7% to 95. 2% . [ Conclusion] The method was simple, accurate, sensitive and applicable to the de- termination of tebuconazole in aaricultural Droducts.展开更多
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro...Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.展开更多
Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmet...Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.展开更多
A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet de...A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet detection(UV)is proposed,and it was applied to determine the seven active compounds in Salvia Miltiorrhiza herb.SGSIL and ionic liquid[BMIM]BF4 were used as the adsorbent and the green elution reagent in the MSPD procedure.Several extraction conditions including type of filler and elution solvent,the volume of elution solvent,material liquid ratio were optimized.Under the optimum conditions,the SGSIL-MSPD-HPLC method showed a low limit of detection(LOD,S/N=3)of 0.0122-0.8788μg/mL for standard solution,limit of quantification(LOQ,S/N=10)of 0.0406-2.9292μg/mL for standard solution,wide linear range from 1.56 to 2000μg/mL for all compounds for standard solution,correlation coefficients(r)of more than 0.9990,acceptable reproducibility(relative standard deviations,RSDs<3.54%),and precision of RSDs<3.36%for intra-day,RSDs<3.50%for inter-day.The satisfactory recoveries ranged from 96.4 to 102.5,with RSDs less than 3.45%.The developed SGSIL-MSPD method is easier and more suitable for the determination of the seven active compounds in Salvia Miltiorrhiza herb than the traditional ultrasonic extraction.It was an effective and efficient method for the extraction and quantification of the seven active compounds in traditional Chinese herbal samples.展开更多
In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical in...In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.展开更多
An ion chromatography(IC) system coupled with on-line column-switching technique was used to determine anions ofμg/g levels in organic chemicals of analytical reagent grade.A novel polystyrene-divinylbenzene-carbon...An ion chromatography(IC) system coupled with on-line column-switching technique was used to determine anions ofμg/g levels in organic chemicals of analytical reagent grade.A novel polystyrene-divinylbenzene-carbon nanotube(PS-DVB-CNT) stationary phase was utilized for matrix elimination.A calibration study was conducted by preparing and analyzing eight concentrations(between 10 and 5000μg/L) of eight standards in deionized water.The linearity was between 0.9978 and 1.And the detection limits ranged from 1.54μg/L to 10.02μg/L.A spiking study was performed on two representative organic chemicals.The recoveries were between 84.3%and 119.6%.展开更多
To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti...To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti. Excessive melting temperature made the gravity segregation of Ti remarkable in ingot. The effect of Ti content on the melting point for AI-Si-Ti ternary system was not as sensitive as that for Al-Ti binary system. The Al-12Si-1Ti filler metal showed good ability to form brazing foil during rapid cooling, ductile fracture surface and similar shear strength to conventional Al-12Si filler metal. Moreover, the Al2 03 reinforcements on initial surface could be covered by the Al-12Si-1Ti filler metal without interfacial gaps after sessile drop test. For Zn-9.5Al-0. 5 Ti braze alloy, severe vaporization of Zn and severe segregation of Ti Occurred. During wettability test for traditional Al-12Si and Zn-9.5Al-0. 5Ti, although some Si or Zn could penetrate into the composite, interfacial gap still remained. The prepared Cu-19Al-1 Ti interlayer consisted of primary phase of Al4Cu9 and network Cu-Al-Ti ternary intermetaUic compound, showing poor ability to form foil and very brittle nature. These results demonstrated that Al-Si-Ti system should be promising for Al-MMCs.展开更多
This paper puts forward for the first time a combined transmission matrix (TM) method to measure the monochromatic TM of scattering media without a reference beam. This method can be named a sequential semi-definite...This paper puts forward for the first time a combined transmission matrix (TM) method to measure the monochromatic TM of scattering media without a reference beam. This method can be named a sequential semi-definite programming method which combines the sequential algorithm and the semi-definite programming method. Firstly, each part of the TM is calculated respectively in proper sequence. Then every part of TM is combined to form a complete TM in accordance with a certain rule. The phase modulation of the incident light is achieved by using a high speed digital mirror device with the superpixel method. We have experimentally demonstrated that the incident light field is focused at the target through scattering media using the measured TM to optimize the wavefront of the incident light. Compared with the semi- definite programming method, our method takes less computational time and occupies less memory space. The sequential semi-definite programming method shows potential applications in imaging through biological tissues.展开更多
The optical properties of matrix of porous glasses and phase-separated glasses were investigated by visible spectroscopy and infrared spectroscopy. The experimental results show that, both the porous glasses and phase...The optical properties of matrix of porous glasses and phase-separated glasses were investigated by visible spectroscopy and infrared spectroscopy. The experimental results show that, both the porous glasses and phase-separated glasses have very good light transmission in visible light region that wavelenth is longer than 560nm. The micropores of porous glasses and the boron-rich phase of phase-separated glasses have strong Rayleigh scatter effects on the visible light, the largest scatter occurrs at 360-370nm; the thicker the glasses, the larger the light scattering. Thus, the pore size distribution and the size of heterogeneous micro zone in boron-rich phase of phase-separated glasses can be measured. After coupled into porours glasses, the most intense absorption of hydrated ions of 〔Co(H 2O) 6〕 2+ shifts from 508nm to 515nm. The production of the most intense absorption and the red shift were owed to Jahn-Teller effect of octahedral field formed by six H 2O molecular and perturbation effect resulted by microporous of porous glasses for its physics-chemical circumstance. As a result, the porous glasses are perfect optical function materials in visible region, which can be assembled by chemical method.展开更多
A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6D...A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.展开更多
In this research, the in situ Si and Fe-rich particles reinforced Al matrix composites were fabricated by rheocasting (RC) process assisted with ultrasonic vibration (USV). After USV treatment, the polygonal prima...In this research, the in situ Si and Fe-rich particles reinforced Al matrix composites were fabricated by rheocasting (RC) process assisted with ultrasonic vibration (USV). After USV treatment, the polygonal primary Si crystals were refined into particles with average diameter of about 15-23 μm, and the fraction of primary Si declined to about 5.4-6.5 vol%. The coarse plate-like δ-Al4(Fe,Mn)Si2 phase was transformed into fine particles with average diameter of about 17-20 μm, and the fraction of particle-like Fe-bearing particles is about 3.6-5.3 vol%. The ultimate tensile strength of the RC composites increases with the increase of Fe content at 350 ℃. The increase of the elevated temperature strength of the composites is mainly attributed to the refinement of δ-Al4((Fe,Mn)Si2 phase and the increase of the volume fraction of the Fe-bearing compounds. Compared with the composites without USV, the RC composites assisted with USV have thinner mechanical mixing layer in wear test, which corresponds to smaller wear rate.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21625702,21337002,21621064)the National Basic Research Program of China(No.2015CB453102)the Strategic Priority Research Program of the Chinese Academy of Science(No.XDB14010400)for the joint financial support
文摘Chlorinated paraffins(SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion(MSPD) was developed for the analysis of short-chain CPs(SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry(GC-ECNI-LRMS) and gas chromatography–quadrupole time-of-flight mass spectrometry(GC–QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent,sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test.Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane(7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC–QTOF-HRMS, and the corresponding relative standard deviations were10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8 ng/g(dry weight, dw) and 19.2 ng/g(dw) as measured by GC-ECNI-LRMS and GC–QTOF-HRMS,respectively. The concentrations of SCCPs in four human placentas were in the range of
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
文摘The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint.
文摘<strong>Objective:</strong> For materials science and generally, for long-term operation of work-pieces in industry the significant role is attributed to dependence of macro-mechanical properties of consolidated body on crystalline phase composition, its dimensions, form, distribution in matrix and the form factor. While working in responsible fields of technology of ceramics and ceramic composites the above referred properties are attributed extremely great role with the view of durability and endurance at the terms of heavy mechanical loads. For description of the resistance of any concrete type work-piece, the crystalline phase plays the greatest role in mechanical strength or deformation of any material. It plays the important role in correlative explanation of materials mechanics and matrix properties. In our case, in the process of destruction of ceramic materials and composites, which will give us exhaustive response to the role of macro- and micro-mechanical properties of materials, the role of a macro- and micro-structural component, that is, of crystalline phase in the process of transition of stable state of materials into meta-stable state is extremely big. Our study aims to develop a formula of dependence of macro-mechanical properties of ceramic and ceramic composites on crystalline phase, the most powerful component of their structure, which will enable theorists and practitioners to select and develop technologies and technological processes correctly. <strong>Method:</strong> On the basis of the study of micro- and macro-mechanical properties of ceramics and ceramic composites and the morphology of crystalline phase and the analysis of the study we determined and created parameters of the formula. <strong>Results:</strong> The formula covers macro-mechanical properties, that is when the work-piece is thoroughly destructed: mechanic at bending at three and four-point load, mechanic at contraction;among morphological characteristics: composition of crystalline phase and their spreading in matrix, their sizes, form factor;correlative dependence of the above listed properties. Absolutely new definition of a factor of spreading of crystalline phase in matrix is offered. <strong>Conclusion: </strong>The created formula is of consolidated nature and it can be used in technology of any ceramic material and ceramic composites. The formula will help practitioners to plan correctly and fulfill accurately all positions of technology of production of work-pieces, to carry out the most responsible thermal treatment process of technology of manufacture of work-pieces;to determine correlation between mechanical and matrix properties of materials.
基金Supported by the Projects in the National Science & Technology Pillar Program During the Eleventh Five-Year Plan Period of China(No 2006BAI14B01)
文摘Matrix solid-phase dispersion(MSPD) was developed for the extraction of four alkaloids, including aconitine, mesaconitine, hypaconitine and deoxyaconitine, from the roots ofAconitum kusnezoffii Reichb. The determination of the analyte was carried out by high performance liquid chromatography with UV detection. The alkaline alumina was used as sorbent. The mixture of acetonitrile and water was used as elution solvent. Several extraction parameters, such as type of sorbent, the ratio of sample to solid support material, type of the elution solvent and the volume of the elution solvent were tested. Mean recoveries ranged from 93.16% to 102.73%, with relative standard deviations from 0.27% to 4.17%. With the extraction efficiency and time expenditure taken into account, MSPD extraction should be a comparatively good method.
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
基金Supported by the Practice Innovation Training Program of Undergraduates in Jiangsu Province,China
文摘[ Objective] The study aimed to determine tebuconazole residue in apples and vegetables using matrix solid phase dispersion-gas chro- matography (MSPD-GC). [ Method] The effects of extraction and determination conditions on the detection of tebuconazole left in apples and veg- etables were analyzed, and the optimum extraction conditions were determined. [ Result] The recovery rate of tebucenazole was the highest when the ratio of a sample to florisil dispersant was 1 : 4, and the mixture of hexane and acetone ( 1 : 1 ) with total volume of 8 ml was as the eluant. Under the optimum conditions, the relative standard deviation (RSD) of the method was 4.9% -7.6%, and the detection limit was 0.1 tJg/g, while the re- covery rate of tebuconazole changed from 86.7% to 95. 2% . [ Conclusion] The method was simple, accurate, sensitive and applicable to the de- termination of tebuconazole in aaricultural Droducts.
文摘Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.
文摘Clarke’s matrix has been applied as a phase-mode transformation matrix to three-phase transmission lines substituting the eigenvector matrices. Considering symmetrical untransposed three-phase lines, an actual symmetrical three-phase line on untransposed conditions is associated with Clarke’s matrix for error and frequency scan analyses in this paper. Error analyses are calculated for the eigenvalue diagonal elements obtained from Clarke’s matrix. The eigenvalue off-diagonal elements from the Clarke’s matrix application are compared to the correspondent exact eigenvalues. Based on the characteristic impedance and propagation function values, the frequency scan analyses show that there are great differences between the Clarke’s matrix results and the exact ones, considering frequency values from 10 kHz to 1 MHz. A correction procedure is applied obtaining two new transformation matrices. These matrices lead to good approximated results when compared to the exact ones. With the correction procedure applied to Clarke’s matrix, the relative values of the eigenvalue matrix off-diagonal element obtained from Clarke’s matrix are decreased while the frequency scan results are improved. The steps of correction procedure application are detailed, investigating the influence of each step on the obtained two new phase-mode transformation matrices.
基金This research was supported by Special Research Fund for Young Doctors of Qiqihar Medical University(QMSI2020B-03,hosted by Wenjing Li).
文摘A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet detection(UV)is proposed,and it was applied to determine the seven active compounds in Salvia Miltiorrhiza herb.SGSIL and ionic liquid[BMIM]BF4 were used as the adsorbent and the green elution reagent in the MSPD procedure.Several extraction conditions including type of filler and elution solvent,the volume of elution solvent,material liquid ratio were optimized.Under the optimum conditions,the SGSIL-MSPD-HPLC method showed a low limit of detection(LOD,S/N=3)of 0.0122-0.8788μg/mL for standard solution,limit of quantification(LOQ,S/N=10)of 0.0406-2.9292μg/mL for standard solution,wide linear range from 1.56 to 2000μg/mL for all compounds for standard solution,correlation coefficients(r)of more than 0.9990,acceptable reproducibility(relative standard deviations,RSDs<3.54%),and precision of RSDs<3.36%for intra-day,RSDs<3.50%for inter-day.The satisfactory recoveries ranged from 96.4 to 102.5,with RSDs less than 3.45%.The developed SGSIL-MSPD method is easier and more suitable for the determination of the seven active compounds in Salvia Miltiorrhiza herb than the traditional ultrasonic extraction.It was an effective and efficient method for the extraction and quantification of the seven active compounds in traditional Chinese herbal samples.
基金supported in part by the National Natural Science Foundation of China(62073003,72131001)Hong Hong Research Grants Council under GRF grants(16200619,16201120,16205421,1620-3922)Shenzhen-Hong Kong-Macao Science and Technology Innovation Fund(SGDX20201103094600006)。
文摘In this paper,we review the development of a phase theory for systems and networks in its first five years,represented by a trilogy:Matrix phases and their properties;The MIMO LTI system phase response,its physical interpretations,the small phase theorem,and the sectored real lemma;The synchronization of a multi-agent network using phase alignment.Towards the end,we also summarize a list of ongoing research on the phase theory and speculate what will happen in the next five years.
基金supported by National Natural Science Foundation of China(Nos.20775070, J0830413)Zhejiang Provincial Natural Science Foundation of China(Nos.R4080124,Y4090104,Y4090078)Zhejiang Qianjiang Project of Science and Technology for Competent People(No.2008R10028)
文摘An ion chromatography(IC) system coupled with on-line column-switching technique was used to determine anions ofμg/g levels in organic chemicals of analytical reagent grade.A novel polystyrene-divinylbenzene-carbon nanotube(PS-DVB-CNT) stationary phase was utilized for matrix elimination.A calibration study was conducted by preparing and analyzing eight concentrations(between 10 and 5000μg/L) of eight standards in deionized water.The linearity was between 0.9978 and 1.And the detection limits ranged from 1.54μg/L to 10.02μg/L.A spiking study was performed on two representative organic chemicals.The recoveries were between 84.3%and 119.6%.
基金The present research was sponsored by the National Natural Science Foundation of China ( No. 50875199), and by State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, China.
文摘To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti. Excessive melting temperature made the gravity segregation of Ti remarkable in ingot. The effect of Ti content on the melting point for AI-Si-Ti ternary system was not as sensitive as that for Al-Ti binary system. The Al-12Si-1Ti filler metal showed good ability to form brazing foil during rapid cooling, ductile fracture surface and similar shear strength to conventional Al-12Si filler metal. Moreover, the Al2 03 reinforcements on initial surface could be covered by the Al-12Si-1Ti filler metal without interfacial gaps after sessile drop test. For Zn-9.5Al-0. 5 Ti braze alloy, severe vaporization of Zn and severe segregation of Ti Occurred. During wettability test for traditional Al-12Si and Zn-9.5Al-0. 5Ti, although some Si or Zn could penetrate into the composite, interfacial gap still remained. The prepared Cu-19Al-1 Ti interlayer consisted of primary phase of Al4Cu9 and network Cu-Al-Ti ternary intermetaUic compound, showing poor ability to form foil and very brittle nature. These results demonstrated that Al-Si-Ti system should be promising for Al-MMCs.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the Natural Science Foundation of Beijing(Grant No.7182091)the National Natural Science Foundation of China(Grant No.21627813)
文摘This paper puts forward for the first time a combined transmission matrix (TM) method to measure the monochromatic TM of scattering media without a reference beam. This method can be named a sequential semi-definite programming method which combines the sequential algorithm and the semi-definite programming method. Firstly, each part of the TM is calculated respectively in proper sequence. Then every part of TM is combined to form a complete TM in accordance with a certain rule. The phase modulation of the incident light is achieved by using a high speed digital mirror device with the superpixel method. We have experimentally demonstrated that the incident light field is focused at the target through scattering media using the measured TM to optimize the wavefront of the incident light. Compared with the semi- definite programming method, our method takes less computational time and occupies less memory space. The sequential semi-definite programming method shows potential applications in imaging through biological tissues.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 2 72 0 4 8)andtheNationalNaturalScienceFoundationofHubeiProvince (No .2 0 0 1ABB0 76 )
文摘The optical properties of matrix of porous glasses and phase-separated glasses were investigated by visible spectroscopy and infrared spectroscopy. The experimental results show that, both the porous glasses and phase-separated glasses have very good light transmission in visible light region that wavelenth is longer than 560nm. The micropores of porous glasses and the boron-rich phase of phase-separated glasses have strong Rayleigh scatter effects on the visible light, the largest scatter occurrs at 360-370nm; the thicker the glasses, the larger the light scattering. Thus, the pore size distribution and the size of heterogeneous micro zone in boron-rich phase of phase-separated glasses can be measured. After coupled into porours glasses, the most intense absorption of hydrated ions of 〔Co(H 2O) 6〕 2+ shifts from 508nm to 515nm. The production of the most intense absorption and the red shift were owed to Jahn-Teller effect of octahedral field formed by six H 2O molecular and perturbation effect resulted by microporous of porous glasses for its physics-chemical circumstance. As a result, the porous glasses are perfect optical function materials in visible region, which can be assembled by chemical method.
基金supported by the National Natural Foundation of China (No. 19934003) the Natural Science Research Key Program of Anhui Educational Committee (No. KJ2011A259)+3 种基金the Opening Program of Cultivating Base of Anhui Key Laboratory of Spintronics and Nanomaterials (Nos. 2010YKF04 2011YKF05)the Professors’and Doctors’Research Startup Foundation of Suzhou University (Nos. 2011jb01 2011jb02)
文摘A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.
基金financially supported by the National Basic Research Program of China (No.2012CB619600)the Fundamental Research Funds for the Central Universities (No.2014QNRC003)
文摘In this research, the in situ Si and Fe-rich particles reinforced Al matrix composites were fabricated by rheocasting (RC) process assisted with ultrasonic vibration (USV). After USV treatment, the polygonal primary Si crystals were refined into particles with average diameter of about 15-23 μm, and the fraction of primary Si declined to about 5.4-6.5 vol%. The coarse plate-like δ-Al4(Fe,Mn)Si2 phase was transformed into fine particles with average diameter of about 17-20 μm, and the fraction of particle-like Fe-bearing particles is about 3.6-5.3 vol%. The ultimate tensile strength of the RC composites increases with the increase of Fe content at 350 ℃. The increase of the elevated temperature strength of the composites is mainly attributed to the refinement of δ-Al4((Fe,Mn)Si2 phase and the increase of the volume fraction of the Fe-bearing compounds. Compared with the composites without USV, the RC composites assisted with USV have thinner mechanical mixing layer in wear test, which corresponds to smaller wear rate.