Pseudo-division algorithm for matrix multivariable polynomial are given, thereby with the view of differential algebra, the sufficient and necessary conditions for transforming a class of partial differential equation...Pseudo-division algorithm for matrix multivariable polynomial are given, thereby with the view of differential algebra, the sufficient and necessary conditions for transforming a class of partial differential equations into infinite dimensional Hamiltonianian system and its concrete form are obtained. Then by combining this method with Wu's method, a new method of constructing general solution of a class of mechanical equations is got, which several examples show very effective.展开更多
The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first dis...The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.展开更多
The Smith form of a matrix plays an important role in the equivalence of matrix.It is known that some multivariate polynomial matrices are not equivalent to their Smith forms.In this paper,the authors investigate main...The Smith form of a matrix plays an important role in the equivalence of matrix.It is known that some multivariate polynomial matrices are not equivalent to their Smith forms.In this paper,the authors investigate mainly the Smith forms of multivariate polynomial triangular matrices and testify two upper multivariate polynomial triangular matrices are equivalent to their Smith forms respectively.展开更多
文摘Pseudo-division algorithm for matrix multivariable polynomial are given, thereby with the view of differential algebra, the sufficient and necessary conditions for transforming a class of partial differential equations into infinite dimensional Hamiltonianian system and its concrete form are obtained. Then by combining this method with Wu's method, a new method of constructing general solution of a class of mechanical equations is got, which several examples show very effective.
基金Supported by the National Natural Science Foundation of China(12271154)the Natural Science Foundation of Hunan Province(2022JJ30234)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231032)。
文摘The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.
基金supported by the National Natural Science Foundation of China under Grant Nos.11971161 and 11871207。
文摘The Smith form of a matrix plays an important role in the equivalence of matrix.It is known that some multivariate polynomial matrices are not equivalent to their Smith forms.In this paper,the authors investigate mainly the Smith forms of multivariate polynomial triangular matrices and testify two upper multivariate polynomial triangular matrices are equivalent to their Smith forms respectively.