This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model...This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.展开更多
Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under di...Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.展开更多
基金Aeronautical Basic Science Foundation of China (03H53048)
文摘This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation.
基金supported by the Hydrogeological Investigation Project in Kaidu River and Kongque River Basin in Xinjiang,China(No.DD2020171)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020006).
文摘Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.