期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
Symmetric Periodic Solution of Linear Periodic Matrix Equations via BCR Algorithm
1
作者 MA Changfeng XIE Yajun 《数学进展》 北大核心 2025年第4期881-890,共10页
Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently so... Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently solving linear systems Aα=b.The objective of this paper is to provide one new iterative algorithm based on BCR method to find the symmetric periodic solutions of linear periodic matrix equations.This kind of periodic matrix equations has not been dealt with yet.This iterative method is guaranteed to converge in a finite number of steps in the absence of round-off errors.Some numerical results are performed to illustrate the efficiency and feasibility of new method. 展开更多
关键词 periodic matrix equation biconjugate residual method symmetric periodic solution convergence analysis
原文传递
Minor Self-conjugate and Skewpositive Semidefinite Solutions to a System of Matrix Equations over Skew Fields
2
作者 姜学波 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第2期86-90,共5页
Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su... Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system. 展开更多
关键词 minor self conjugate matrix skewpositive semidefinite matrix system of matrix equations skew field the real quatrnion field
在线阅读 下载PDF
THE GENERALIZED REFLEXIVE SOLUTION FOR A CLASS OF MATRIX EQUATIONS (AX-B,XC=D) 被引量:7
3
作者 李范良 胡锡炎 张磊 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期185-193,共9页
In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solv... In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved. 展开更多
关键词 matrix equations generalized reflexive matrix optimal approximation
在线阅读 下载PDF
The General and Centro(Kewsy) Symmetric Solutions to a System of Matrix Equations over an Arbitrary Skew Field 被引量:3
4
作者 QIN Jian-guo SONG Guang-ai 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第1期66-70,共5页
Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew... Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew field. The representations of such the solutions of the system are also derived. 展开更多
关键词 system of matrix equations inner inverse of a matrix reflexive inverse of a matrix centro (skew) symmetric matrix skew field
在线阅读 下载PDF
Reflexive solution to a system of matrix equations 被引量:2
5
作者 常海霞 王卿文 《Journal of Shanghai University(English Edition)》 CAS 2007年第4期355-358,共4页
We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equati... We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equations AX = B and XC = D. The explicit solutions of the approximation problem min x∈Ф ||X - E||F was given, where E is a given complex matrix and Ф is the set of all reflexive (or antireflexive) solutions of the system mentioned above, and ||·|| is the Frobenius norm. Furthermore, it was pointed that some results in a recent paper are special cases of this paper. 展开更多
关键词 system of matrix equations Moore-Penrose inverse reflexive matrix antireflexive matrix Frobenius norm
在线阅读 下载PDF
AOR Iterative Method for Coupled Lyapunov Matrix Equations 被引量:3
6
作者 ZHANG Shi-jun WANG Shi-heng WANG Ke 《Chinese Quarterly Journal of Mathematics》 2021年第2期141-148,共8页
An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuo... An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuous-time Markovian jump linear systems.The proposed algorithm improves the convergence rate,which can be seen from the given illustrative examples.The comprehensive theoretical analysis of convergence and optimal parameter needs further investigation. 展开更多
关键词 Coupled Lyapunov matrix equations AOR iterative method SOR iterative method Markovian jump systems
在线阅读 下载PDF
Extremal ranks of the solution to a system of real quaternion matrix equations 被引量:1
7
作者 俞绍文 王卿文 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期229-232,共4页
In this paper, the maximal and minimal ranks of the solution to a system of matrix equations over H, the real quaternion algebra, were derived. A previous known result could be regarded as a special case of the new re... In this paper, the maximal and minimal ranks of the solution to a system of matrix equations over H, the real quaternion algebra, were derived. A previous known result could be regarded as a special case of the new result. 展开更多
关键词 system of matrix equations SOLUTION minimal rank maximal rank generalized inverse
在线阅读 下载PDF
Improved gradient iterative algorithms for solving Lyapunov matrix equations 被引量:1
8
作者 顾传青 范伟薇 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期395-399,共5页
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi... In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples. 展开更多
关键词 gradient iterative (GI) algorithm improved gradient iteration (GI) algorithm Lyapunov matrix equations convergence factor
在线阅读 下载PDF
The{P,k+1}-reflexive Solution to System of Matrix Equations AX=C,XB=D 被引量:1
9
作者 CAO Nan-bin ZHANG Yu-ping 《Chinese Quarterly Journal of Mathematics》 2018年第1期32-42,共11页
Let P∈C^(n×n)be a Hermitian and{k+1}-potent matrix,i.e.,P^(k+1)=P=P^(*),where(·)^(*)stands for the conjugate transpose of a matrix.A matrix X∈C^(n×n)is called{P,k+1}-reflexive(anti-reflexive)if PXP=X(... Let P∈C^(n×n)be a Hermitian and{k+1}-potent matrix,i.e.,P^(k+1)=P=P^(*),where(·)^(*)stands for the conjugate transpose of a matrix.A matrix X∈C^(n×n)is called{P,k+1}-reflexive(anti-reflexive)if PXP=X(P XP=-X).The system of matrix equations AX=C,XB=D subject to{P,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2,the least squares solution and the associated optimal approximation problem are also considered. 展开更多
关键词 system of matrix equations potent matrix {P k+1}-reflexive(anti-reflexive) approximation problem least squares solution
在线阅读 下载PDF
A note on combined generalized Sylvester matrix equations
10
作者 GuangrenDUAN 《控制理论与应用(英文版)》 EI 2004年第4期397-400,共4页
The solution of two combined generalized Sylvester matrix equations is studied. It is first shown that the two combined generalized Sylvester matrix equations can be converted into a normal Sylvester matrix equation t... The solution of two combined generalized Sylvester matrix equations is studied. It is first shown that the two combined generalized Sylvester matrix equations can be converted into a normal Sylvester matrix equation through extension, and then with the help of a result for solution to normal Sylvester matrix equations, the complete solution to the two combined generalized Sylvester matrix equations is derived. A demonstrative example shows the effect of the proposed approach. 展开更多
关键词 Sylvester matrix equations Jordan matrices Control applications
在线阅读 下载PDF
The Reflexive Solutions of the Matrix Equations (AX,XB^H )= (C,D^H )
11
作者 张敏 林卫国 刘丁酉 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期311-315,共5页
The matrix equations (AX, XBH)=(C, DH) have been widely used in structural design, parameter identification, linear optimal control, and so on. But few researches studied the reflexive solutions. A new approach for th... The matrix equations (AX, XBH)=(C, DH) have been widely used in structural design, parameter identification, linear optimal control, and so on. But few researches studied the reflexive solutions. A new approach for the reflexive solutions to the matrix equations was proposed. By applying the canonical correlation decomposition (CCD) of matrix pairs, the necessary and sufficient conditions for the existence and the general expression for the reflexive solutions of the matrix equations (AX, XBH)=(C, DH) were established. In addition, by using the methods of space decomposition, the expression of the optimal approximation solution to a given matrix was derived. 展开更多
关键词 reflexive matrix matrix equations optimal approximation canonical correlation decomposition(CCD)
在线阅读 下载PDF
Efcient Iterative Solutions to General Coupled Matrix Equations
12
作者 Masoud Hajarian 《International Journal of Automation and computing》 EI CSCD 2013年第5期481-486,共6页
Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a specia... Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a special case)l t=1EstYtFst = Gs,s = 1,2,···,l over the generalized reflexive matrix group(Y1,Y2,···,Yl).We derive an efcient gradient-iterative(GI) algorithm for fnding the generalized reflexive solution group of the general coupled matrix equations.Convergence analysis indicates that the algorithm always converges to the generalized reflexive solution group for any initial generalized reflexive matrix group(Y1(1),Y2(1),···,Yl(1)).Finally,numerical results are presented to test and illustrate the performance of the algorithm in terms of convergence,accuracy as well as the efciency. 展开更多
关键词 General coupled matrix equations Lyapunov matrix equation Sylvester matrix equation generalized reflexive solutiongroup iterative algorithm
原文传递
Gradient Based Iterative Solutions for Sylvester-Conjugate Matrix Equations
13
作者 Hailong SHEN Cheng PENG +1 位作者 Xinhui SHAO Tie ZHANG 《Journal of Mathematical Research with Applications》 CSCD 2017年第3期351-366,共16页
This paper presents a gradient based iterative algorithm for Sylvester-conjugate matrix equations with a unique solution. By introducing a relaxation parameter and applying the hierarchical identification principle, a... This paper presents a gradient based iterative algorithm for Sylvester-conjugate matrix equations with a unique solution. By introducing a relaxation parameter and applying the hierarchical identification principle, an iterative algorithm is constructed to solve Sylvester matrix equations. By applying a real representation of a complex matrix as a tool and using some properties of the real representation, convergence analysis indicates that the iterative solutions converge to the exact solutions for any initial values under certain assumptions.Numerical examples are given to illustrate the efficiency of the proposed approach. 展开更多
关键词 Sylvester-conjugate matrix equations iterative solutions convergence relaxation parameter
原文传递
SOME FURTHER NOTES ON THE MATRIX EQUATIONS A^TXB+B^TX^TA=C AND A^TXB+B^TXA=C 被引量:2
14
作者 G.SOARES 《Acta Mathematica Scientia》 SCIE CSCD 2015年第1期275-280,共6页
Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors pre... Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors presented a lower bound for the product of the eigenvalues of the solutions to these matrix equations. Inspired by their work, we give some generalizations of Dehghan and Hajarian results. Using the theory of the numerical ranges, we present an inequality involving the trace of C when A, B, X are normal matrices satisfying A^T B = BA^T. 展开更多
关键词 matrix equation EIGENVALUE trace permutation matrix
在线阅读 下载PDF
Developing Bi-CG and Bi-CR Methods to Solve Generalized Sylvester-transpose Matrix Equations 被引量:2
15
作者 Masoud Hajarian 《International Journal of Automation and computing》 EI CSCD 2014年第1期25-29,共5页
The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi... The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi-CG and Bi-CR methods for the solution of the generalized Sylvester-transpose matrix equationp i=1(Ai X Bi+Ci XTDi)=E(including Lyapunov,Sylvester and Sylvester-transpose matrix equations as special cases).Numerical results validate that the proposed algorithms are much more efcient than some existing algorithms. 展开更多
关键词 Linear systems iterative method bi-conjugate gradients(Bi-CG) method bi-conjugate residual(Bi-CR) method Sylvester matrix equation
原文传递
{P,Q,k+1}-reflexive solutions to a system of matrix equations 被引量:1
16
作者 LI Jie WANG Qingwen 《应用数学与计算数学学报》 2018年第3期619-630,共12页
In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above... In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above to have the{P,Q,k+1}-reflexive and anti-reflexive solutions.We also obtain the expressions of such solutions to the system by the singular value decomposition.Moreover,we consider the least squares{P,Q,k+1}-reflexive and anti-reflexive solutions to the system.Finally,we give an algorithm to illustrate the results of this paper. 展开更多
关键词 matrix equation least squares solution {P Q k+1}-reflexive and anti-reflexive solution singular value decomposition
在线阅读 下载PDF
Parameterized Solution to a Class of Sylvester Matrix Equations
17
作者 Yu-Peng Qiao Hong-Sheng Qi Dai-Zhan Cheng 《International Journal of Automation and computing》 EI 2010年第4期479-483,共5页
A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them, an easily computable numerical method for complete parameterized solutions of the Sylvester matrix... A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them, an easily computable numerical method for complete parameterized solutions of the Sylvester matrix equation AX - EXF = BY and its dual equation XA - FXE = YC are provided. It is also shown that the results obtained can be used easily for observer design. The method proposed in this paper is universally applicable to linear matrix equations. 展开更多
关键词 Sylvester matrix equation parameterized solution Kronecker product linear matrix equation Luenberger observers
在线阅读 下载PDF
An iterative algorithm for solving a class of matrix equations
18
作者 Minghui WANG Yan FENG 《控制理论与应用(英文版)》 EI 2009年第1期68-72,共5页
In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration s... In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration steps in the absence of roundoff errors. Some examples illustrate that this algorithm is very efficient and better than that of [ 1 ] and [2]. 展开更多
关键词 Iterative algorithm Conjugate gradient method Lyapunov matrix equation Sylvester matrix equation
在线阅读 下载PDF
ON SOLUTIONS OF QUATERNION MATRIX EQUATIONS XF-AX=BY AND XF-A=BY
19
作者 宋彩芹 陈果良 王晓东 《Acta Mathematica Scientia》 SCIE CSCD 2012年第5期1967-1982,共16页
In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion mat... In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion matrix equation,which include the Sylvester matrix equation and Lyapunov matrix equation as special cases.By applying of Kronecker map and complex representation of a quaternion matrix,the sufficient conditions to compute the solution can be given and the expressions of the explicit solutions to the above two quaternion matrix equations XF-AX=BY and XF-A=BY are also obtained.By the established expressions,it is easy to compute the solution of the quaternion matrix equation in the above two forms.In addition,two practical algorithms for these two quaternion matrix equations are give.One is complex representation matrix method and the other is a direct algorithm by the given expression.Furthermore,two illustrative examples are proposed to show the efficiency of the given method. 展开更多
关键词 Kronecker map explicit solution generalized Sylvester-quaternion matrix equation complex representation method
在线阅读 下载PDF
Numerical Methods for a Class of Quadratic Matrix Equations
20
作者 GUAN Jinrui WANG Zhixin SHAO Rongxia 《应用数学》 北大核心 2024年第4期962-970,共9页
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of... Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper. 展开更多
关键词 Quadratic matrix equation M-matrix Minimal nonnegative solution Newton method Bernoulli method
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部