期刊文献+
共找到777篇文章
< 1 2 39 >
每页显示 20 50 100
Towards understanding the microstructure-mechanical property correlations of multi-level heterogeneous-structured Al matrix composites
1
作者 Yuesong Wu Xiaobin Lin +4 位作者 Xudong Rong Xiang Zhang Dongdong Zhao Chunnian He Naiqin Zhao 《Journal of Materials Science & Technology》 2025年第6期117-123,共7页
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda... 1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6]. 展开更多
关键词 reinforcements agglomeration comprehensive mechanical properties agglomeration reinforcements plastic deformation strength ductility trade off multi level heterogeneous structured Al matrix composites microstructure mechanical property correlations al matrix composites amcs
原文传递
Strengthening-weakening effect of graphene orientation angle on mechanical properties of AZ91 magnesium matrix composites
2
作者 Dunwei Peng Zhuo Song +3 位作者 Yunpeng Zhang Xiaopan Wang Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 2025年第8期3659-3672,共14页
Graphene,as the reinforcing phase of magnesium matrix composites,can effectively improve the material strength,elastic modulus,and other properties.However,the random distribution of graphene in the matrix(i.e.,random... Graphene,as the reinforcing phase of magnesium matrix composites,can effectively improve the material strength,elastic modulus,and other properties.However,the random distribution of graphene in the matrix(i.e.,random orientation angle)leads to different reinforcement effects on the matrix.To gain a deeper understanding of the impact of monolayer graphene(1 LG)with varying orientation angles on the properties of Mg-9 Al-1 Zn(AZ91(wt.%))magnesium alloy,molecular dynamics(MD)simulations are employed to analyze the mechanical properties of AZ91/1 LG composites under uniaxial tension.The simulation results show that Young's modulus and tensile strength of AZ91/1 LG composites decrease gradually with the increase of the orientation angle of the 1 LG.The Young's modulus and tensile strength of AZ91/1 LG composites can be improved by the 1 LG orientation angle of 0°~10°,where the two are enhanced by 21.7%and 19.7%respectively,at an orientation angle of 0°.However,the Young's modulus and tensile strength of 1 LG are decreased for orientation angles of 20°~90°.Atomic structure evolution analysis revealed that the deformation mechanism of AZ91/1 LG nanocomposites mainly depended on the load transfer ability of 1 LG with different orientation angles,the bonding ability with AZ91 magnesium alloy matrix and the change of dislocation density.By fitting the formula to the tensile strength of AZ91/1 LG composites with different orientation angles of 1 LG,it is found that the simulated data of the AZ91/1 LG composites containing a 1 LG has a maximum relative error of about 10%concerning the fitted empirical formula to calculate the data.The maximum relative error for AZ91/1 LG composites containing multiplate 1 LG with different orientation angles is 7%.In addition,the interaction between graphene and dislocations in AZ91 magnesium matrix was further explained by transmission electron microscopy(TEM)and phase-field-crystal(PFC)simulation.It can provide some technical guidance for the experimental process design of AZ91/1 LG composites. 展开更多
关键词 GRAPHENE Magnesium matrix composites Molecular dynamics Mechanical properties Phase-field-crystal
在线阅读 下载PDF
Oxidation Behavior and Mechanical Property of Ceramifiable Phenolic Resin Matrix Composites with a Wide Temperature Range
3
作者 YANG Suohui ZHANG Shiquan +2 位作者 ZHANG Ruizhi ZHANG Jian SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1231-1238,共8页
The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results sho... The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties. 展开更多
关键词 phenolic resin matrix composites MICA surface modification thermal oxidation behavior mechanical property
原文传递
Microstructural Evolution and Mechanical Properties of Graphene Nanoplatelet Reinforced Ti-6Al-4V Matrix Composites
4
作者 Xinrui Gu Xudong Yuan +6 位作者 Tingyi Yan Biao Li Haojie Liang Jingyu Pang Huameng Fu Hongwei Zhang Long Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第11期1991-2000,共10页
Graphene is considered promising reinforcement for improving the mechanical properties of the titanium alloys.However,overcoming the strength-ductility trade-off in graphene-reinforced titanium composites remains a ch... Graphene is considered promising reinforcement for improving the mechanical properties of the titanium alloys.However,overcoming the strength-ductility trade-off in graphene-reinforced titanium composites remains a challenge.In this study,the high-performance graphene nanoplatelets(GNPs)reinforced Ti-6Al-4V(TC4)matrix composites were successfully synthesized by combining the hot-pressing sintering and hot-rolling methods.Studies on the effect of GNPs on microstructures and properties of the as-sintered and as-rolled TC4 composites were systematically conducted.It indicates that the strength of the composites can be substantially enhanced by the addition of GNPs,primarily attributable to grain refinement and the pinning effect induced by in situ formed TiC particles.Moreover,the increase in the GNPs content results in a decrease in the plasticity of the as-sintered composites due to the aggregation of TiC.Additionally,hot rolling synchronously enhances the strength and plasticity of the composites by facilitating the homogeneous dispersion of TiC within the TC4 matrix.This work provided a potential strategy in designing the graphene-reinforced TC4 matrix composites with superior strength-ductility synergy. 展开更多
关键词 GRAPHENE Hot-pressing sintering Titanium matrix composites Mechanical properties
原文传递
In-situ Particulate-Reinforced Al Matrix Composites:Effect of the Synergistic Mechanism of ZrB_(2)and Al_(3)Zr on Tribological Behavior
5
作者 Feng Wang Hui Li +4 位作者 Xiaolong Zhang Lei Jiao Wei He Xudong Han Shcheretskyi Volodymyr 《Chinese Journal of Mechanical Engineering》 2025年第3期291-307,共17页
To investigate the key factors that cause ZrB_(2)/AA6111 and(ZrB_(2)+Al_(3)Zr)/AA6111 aluminum matrix composites(AMCs)made via in situ reaction to behave differently in terms of friction and wear.Room-temperature dry ... To investigate the key factors that cause ZrB_(2)/AA6111 and(ZrB_(2)+Al_(3)Zr)/AA6111 aluminum matrix composites(AMCs)made via in situ reaction to behave differently in terms of friction and wear.Room-temperature dry sliding tribological behavior of AA6111 Al alloys,ZrB_(2)/AA6111,and(ZrB_(2)+Al_(3)Zr)/AA6111 AMCs against silicon nitride(Si_(3)N_(4))counterparts were investigated.The study showed that AA6111/Al alloy had the highest wear rate and the most unstable coefficient of friction(COF),indicating the worst abrasion resistance.(ZrB_(2)+Al_(3)Zr)/AA6111 AMCs exhibit a lower wear rate and higher COF than ZrB_(2)/AA6111 AMCs.The result proved that the Al_(3)Zr particles prepared by the in-situ reaction are strongly bonded(lattice misfitδ=2.7%)to the Al matrix and are not easily stripped from the substrate.ZrB_(2)/AA6111 AMCs exhibited a lower COF attributed to the tribochemical reaction inducing the formation of more boric acid(H_(3)BO_(3))films with a graphite-like structure having a lubricating effect. 展开更多
关键词 Aluminum matrix composites In-situ reaction Wear mechanism Wear performance
在线阅读 下载PDF
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
6
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Additive manufacturing of ultrastrong and ductile nickel matrix composites via hetero-deformation induced strengthening
7
作者 Shang Sui Jiawei Qi +8 位作者 Dong Ma Chunjie Xu Yuanshen Qi Mengting Xu Yuhang Liu Wanjian Yu Can Guo Xiangquan Wu Zhongming Zhang 《International Journal of Extreme Manufacturing》 2025年第4期277-295,共19页
Hetero-deformation induced(HDI) strengthening generally yields a weak effect on the mechanical property improvement of particle-reinforced metal matrix composites(MMCs). In the present work, a novel strategy was repor... Hetero-deformation induced(HDI) strengthening generally yields a weak effect on the mechanical property improvement of particle-reinforced metal matrix composites(MMCs). In the present work, a novel strategy was reported to induce remarkable HDI strengthening in MMCs by selecting a reinforcing material with excellent geometrically necessary dislocation(GND) storage ability. The viability of the proposed strategy was tested on additively manufactured nickel matrix composites consisting of Inconel 625 alloy(IN625) as the matrix and high-entropy alloy VNbMoTa as the reinforcing material. It was found that the average grain size and dislocation density of the additively manufactured MMCs gradually decreased with the increase in the additional amount of VNbMoTa. All the samples possessed a similar two-layer VNbMoTa-matrix interface structure containing a high-entropy alloy layer and a Laves phase layer;however, the interface width varied. This two-layer interface could hold GND pile-ups without breaking to ensure a good load transfer effect, and ductile VNbMoTa particles demonstrated excellent GND storage capacity to induce significant HDI stress. The HDI stress for the IN625-(10 wt%)VNbMoTa sample was approximately 200 MPa higher than that for the pure IN625 alloy, resulting in an excellent strength-ductility synergy. The yield strength and elongation of the IN625-(10 wt%)VNbMoTa sample reached(1 032.5 ± 18.8)MPa and(11.8 ± 1.2)%, respectively. In addition, the IN625-(10 wt%)VNbMoTa composite also demonstrated superior mechanical properties at 650℃ that were comparable to those at room temperature, implying that VNbMoTa addition remarkably limited strength reduction caused by temperature. Deformable VNbMoTa particles effectively alleviated the stress concentration, delayed the crack initiation, generated more dislocations and pile-ups, and, in turn, improved the overall high-temperature strength of composites. 展开更多
关键词 additive manufacturing metal matrix composites hetero-deformation induced strengthening mechanical properties
在线阅读 下载PDF
Improvement of strength and ductility of TC4_(p)/AZ91D magnesium matrix composites by modifying the extrusion ratio
8
作者 Zuying Yu Kaihong Zheng +4 位作者 Xintao Li Jun Xu Jianxin Sun Nan Zhou Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第2期746-759,共14页
In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research fi... In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research findings demonstrate that both TC4 andβ-Mg_(17)Al_(12) phases contribute to promoting dynamic recrystallization(DRX)nucleation.With increasing extrusion ratio,theβ-phase(Mg_(17)Al_(12))gradually fractures into smaller particles,leading to progressive grain refinement.Furthermore,the transition from〈01-10〉fiber texture to non-basal texture in theα-Mg matrix after hot extrusion is attributed to improved DRX behavior and activation of non-basal slip.As the extrusion ratio increases,the tensile strength and elongation(EL)of TC4_(p)/AZ91D composite improve significantly,reaching optimum comprehensive mechanical properties at an extrusion of 40:1 with a yield strength(YS)of 257 MPa,an ultimate tensile strength(UTS)of 357 MPa,and an EL of 9.7%.This remarkable strengthening effect is primarily attributed toβ-phase reinforcement,grain refinement strengthening,and strain hardening. 展开更多
关键词 Magnesium matrix composites Mechanical properties TC4 titanium alloy Extrusion process
在线阅读 下载PDF
Refinement of core-shell hybrid structure reinforced CuZr-based bulk metallic glass matrix composites via dealloying in metallic melt
9
作者 Wei GUO Long-feng LI +5 位作者 Zhen ZHANG Mi ZHAO Jin-cheng WANG Yan-qiang QIAO Shu-lin LÜ Shu-sen WU 《Transactions of Nonferrous Metals Society of China》 2025年第9期2988-2999,共12页
Metallic glass matrix composites(BMGCs)with compositions of[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(100-x)Ta_(x)(atomic fraction,%,x=3,5,7)were successfully prepared via dealloying in metallic melt.The reinfor... Metallic glass matrix composites(BMGCs)with compositions of[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(100-x)Ta_(x)(atomic fraction,%,x=3,5,7)were successfully prepared via dealloying in metallic melt.The reinforcing phase in these alloys has core-shell hybrid structure with Ta-rich particles as core and B2-CuZr as shell.In this method,the dealloyed Ta from Zr-Ta pre-alloys maintained in solid state and aggregated to form the fine Ta-rich phase in the final products.This effectively decreases the size of Ta-rich phase compared with that prepared via conventional arc-melting,where the Ta-rich phase was formed through dissolving and precipitation.Among the three compositions,[(Zr_(0.5)Cu_(0.5))_(0.925)Al_(0.07)Sn_(0.005)]_(95)Ta_(5) showed the highest plastic strain of 11.2%,much higher than that of the arc-melted counterparts(4.3%).Such improvement in mechanical properties was related with the refined core-shell hybrid reinforcing structure,which could hinder the rapid propagation of main shear band more efficiently and cause them to branch and proliferate at the interface. 展开更多
关键词 metallic glass matrix composites core-shell hybrid reinforcement structure dealloying in metallic melt strength and toughness B2-CuZr
在线阅读 下载PDF
Fiber reinforced ceramic matrix composites:from the controlled fabrication to precision machining
10
作者 Shuoshuo Qu Yuying Yang +3 位作者 Peng Yao Luyao Li Yang Sun Dongkai Chu 《International Journal of Extreme Manufacturing》 2025年第6期118-150,共33页
Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospect... Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining. 展开更多
关键词 fiber reinforced ceramic matrix composites removal mechanism traditional mechanical machining technologies non-traditional mechanical machining technologies
在线阅读 下载PDF
The potential of deformable titanium reinforced magnesium-matrix composites:A review of preparation,characterization,and performance evaluation
11
作者 Yitao Wang Jianbo Li +6 位作者 Huan Luo Weizhang Wang Daiyi Deng Jianwei Chen Xianhua Chen Kaihong Zheng Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第8期3490-3523,共34页
Magnesium matrix composites(MMCs)combine exceptional low density,high specific strength,and stiffness,positioning them as critical materials for aerospace,automotive,and electronics industries.This review highlights r... Magnesium matrix composites(MMCs)combine exceptional low density,high specific strength,and stiffness,positioning them as critical materials for aerospace,automotive,and electronics industries.This review highlights recent progress in the fabrication of Ti-Mg composites and analyzes the mechanisms behind their enhanced mechanical properties.A key focus is the interfacial deformation incompatibility between Ti and Mg phases,which generates strain gradients and promotes the accumulation of geometrically necessary dislocations(GNDs)at the interface.This process not only improves strain hardening and ductility but also reveals the need for advanced micromechanical models to capture the plastic behavior of both phases.The review critically examines the impact of different Mg matrix types(AZ,AM,VW series)and the role of interfacial product morphology and size on bonding and overall performance.Furthermore,Ti reinforcement endows the composites with superior wear resistance and thermal conductivity,indicating broad application potential. 展开更多
关键词 Magnesium matrix composites Deformable Ti reinforcement Mechanical properties
在线阅读 下载PDF
Micromechanical modeling and evaluation of CNTs reinforced magnesium matrix composites based on stress softening modified constitutive model
12
作者 Mingjie Shen Baojian Han +5 位作者 Tao Ying Jingya Wang Liping Zhou Xiangzhen Xue Yang Gao Zongyang Yang 《Journal of Magnesium and Alloys》 2025年第1期243-259,共17页
Heterogeneous composites have strong anisotropy and are prone to dynamic recrystallization during hot compression,making the me-chanical response highly nonlinear.Therefore,it is a very challenging task to intellectua... Heterogeneous composites have strong anisotropy and are prone to dynamic recrystallization during hot compression,making the me-chanical response highly nonlinear.Therefore,it is a very challenging task to intellectually judge the thermal deformation characteristics of magnesium matrix composites(MgMCs).In view of this,this paper introduces a method to accurately solve the thermoplastic deformation of composites.Firstly,a hot compression constitutive model of magnesium matrix composites based on stress softening correction was established.Secondly,the complex quasi-realistic micromechanics modeling of heterogeneous magnesium matrix composites was conducted.By introducing the recrystallization softening factor and strain parameter into the constitutive equation,the accurate prediction of the global rheological response of the composites was realized,and the accuracy of the new constitutive model was proved.Finally,the thermal pro-cessing map of magnesium matrix composites was established,and the suitable processing range was chosen.This paper has certain guiding values for the prediction of the thermodynamic response and thermal processing of magnesium matrix composites. 展开更多
关键词 Newly constitutive model Prediction of the global rheological behavior Magnesium matrix composites
在线阅读 下载PDF
Hot deformation behaviors of 35% SiC_p/2024Al metal matrix composites 被引量:7
13
作者 郝世明 谢敬佩 +3 位作者 王爱琴 王文焱 李继文 孙浩亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2468-2474,共7页
The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strai... The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1. 展开更多
关键词 metal matrix composites constitutive equations processing map MICROSTRUCTURE powder metallurgy
在线阅读 下载PDF
Hot extrusion of SiC_p/AZ91 Mg matrix composites 被引量:4
14
作者 王晓军 胡小石 +2 位作者 聂凯波 吴昆 郑明毅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1912-1917,共6页
SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an ... SiC particles reinforced AZ91 Mg matrix composites (SiCp/AZ91) with SiC volume fractions of 5%, 10% and 15% were fabricated by stir casting. After T4 treatment, these composites were extruded at 350 °C with an extrusion ratio of 12:1. In the as-cast composite, particles segregated at a microscopic scale within the intergranular regions. Hot extrusion almost eliminated this particle aggregation and improved the particle distribution of the composites. In addition, extrusion refined the grains of matrix. The results show that hot extrusion significantly improves the mechanical properties of the composites. In the as-extruded composite, with the increase of SiCp contents, the grain size of the extruded composites decreases, the strength and elastic modulus increase but the elongation decreases. 展开更多
关键词 EXTRUSION Mg matrix composites SICP AZ91 magnesium alloy volume fraction
在线阅读 下载PDF
Development of Al-12Si-xTi system active ternary filler metals for Al metal matrix composites 被引量:6
15
作者 张贵锋 苏伟 +1 位作者 张建勋 A.SUZUMURA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期596-603,共8页
To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that alt... To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing). 展开更多
关键词 Al metal matrix composites BRAZING transient liquid phase bonding WETTABILITY filler metal
在线阅读 下载PDF
Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing 被引量:2
16
作者 毛建伟 吕维洁 +2 位作者 王立强 张荻 覃继宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1393-1399,共7页
The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt j... The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition. 展开更多
关键词 titanium matrix composites pulsed current WELDING mechanical properties grain refinement microstructure
在线阅读 下载PDF
Micro-macro Unified Analysis of Flow Behavior of Particle-reinforced Metal Matrix Composites 被引量:2
17
作者 张鹏 李付国 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第2期252-259,共8页
This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model... This article presents a micro-macro unified model for predicting the deformation of metal matrix composites (MMCs). A macro-scale model is developed to obtain the proper boundary conditions for the micro-scale model, which is used to assess the microstructural deformation of materials. The usage of the submodel technique in the analysis makes it possible to shed light on the stress and strain field at the microlevel. This is helpful to investigate the linkage between the microscopic and the macroscopic flow behavior of the composites. An iterative procedure is also proposed to find out the optimum parameters. The results show that the convergence can be attained after three iterations in computation. In order to demonstrate the reliability of mi- cro-macro unified model, results based on the continuum composite model are also investigated using the stress-strain relation of composite obtained from the iterations. By comparing the proposed unified model to the continuum composite model, it is clear that the former exhibits large plastic deformation in the case of little macroscopic deformation, and the stresses and strains obtained from the submodel are higher than those from the macroscopic deformation. 展开更多
关键词 metal matrix composites micro-macro unified model submodel flow behavior MICROSTRUCTURE
原文传递
EFFECT OF FIBER FAILURE ON QUASI-STATIC UNLOADING/RELOADING HYSTERESIS LOOPS OF CERAMIC MATRIX COMPOSITES 被引量:2
18
作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期94-102,共9页
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ... The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data. 展开更多
关键词 ceramic matrix composites hysteresis loops matrix cracking interface debonding fiber failure
在线阅读 下载PDF
Effect of milling time on microstructure evolution and tribological properties of TiB_(2)−graphite hybrid reinforced Cu matrix composites
19
作者 Heng-qing LI Jun-ming LU +5 位作者 Yi-min GAO Sheng-feng ZHOU Bai-song GUO Yi-ran WANG Wei LI Yang-zhen LIU 《Transactions of Nonferrous Metals Society of China》 2025年第12期4184-4196,共13页
The effect of milling time on the microstructure and tribological properties of TiB_(2)−graphite hybrid reinforced Cu matrix composites was investigated.Hot-press sintering method was used to prepare the composites wi... The effect of milling time on the microstructure and tribological properties of TiB_(2)−graphite hybrid reinforced Cu matrix composites was investigated.Hot-press sintering method was used to prepare the composites with different milling time(4,6,8,10 and 12 h),and the tribological behaviors were studied.The results revealed that the relative density and electric conductivity of the composites initially increased and then decreased with an increase in milling time.The composites fabricated by milling for 6 h had the highest relative density and electric conductivity,which are 99.1%and 42.8%(IACS),respectively.The friction coefficient and wear rate of the composites initially decreased and then increased with an increase in milling time.The lowest friction coefficient and wear rate were measured to be 0.234 and 1.974×10^(−5)mm^(3)/(N·m),respectively,for the composites synthesized after 6 h of milling.The primary wear mechanism of the composites milled for 6 h was abrasive wear. 展开更多
关键词 metal matrix composite wear mechanism milling time hot-press sintering tribological properties
在线阅读 下载PDF
Mechanical behavior of SiC reinforced ZA63 Mg matrix composites: Experiments and 3D finite element modelling
20
作者 Chong Wang Zelong Du +6 位作者 Enyu Guo Shuying Bai Zongning Chen Huijun Kang Guohao Du Yanling Xue Tongmin Wang 《Journal of Magnesium and Alloys》 2025年第3期1294-1309,共16页
In this work,the microstructure evolution and mechanical behavior of extruded SiC/ZA63 Mg matrix composites are investigated via combined experimental study and three-dimensionalfinite element modelling(3D FEM)based on... In this work,the microstructure evolution and mechanical behavior of extruded SiC/ZA63 Mg matrix composites are investigated via combined experimental study and three-dimensionalfinite element modelling(3D FEM)based on the actual 3D microstructure achieved by synchrotron tomography.The results show that the average grain size of composite increases from 0.57μm of 8μm-SiC/ZA63 to 8.73μm of 50μm-SiC/ZA63.The type of texture transforms from the typicalfiber texture in 8μm-SiC/ZA63 to intense basal texture in 50μm-SiC/ZA63 composite and the intensity of texture increases sharply with increase of SiC particle size.The dynamic recrystallization(DRX)mechanism is also changed with increasing SiC particle size.Experimental and simulation results verify that the strength and elongation both decrease with increase of SiC particle size.The 8μm-SiC/ZA63 composite possesses the optimal mechanical property with yield strength(YS)of 383 MPa,ultimate tensile strength(UTS)of 424 MPa and elongation of 6.3%.The outstanding mechanical property is attributed to the ultrafine grain size,high-density precipitates and dislocation,good loading transfer effect and the interface bonding between SiC and matrix,as well as the weakened basal texture.The simulation results reveal that the micro-cracks tend to initiate at the interface between SiC and matrix,and then propagate along the interface between particle and Mg matrix or at the high strain and stress regions,and further connect with other micro-cracks.The main fracture mechanism in 8μm-SiC/ZA63 composite is ductile damage of matrix and interfacial debonding.With the increase of particle size,interface strength and particle strength decrease,and interface debonding and particle rupture become the main fracture mechanism in the 30μm-and 50μm-SiC/ZA63 composites. 展开更多
关键词 Mg matrix composite Synchrotron tomography 3D finite element model Microstructure evolution Mechanical property
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部