High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt...High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.展开更多
Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and...Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and stable long-term cycling performance are essential.These essential aspects create a need for superior cathode materials,which represents a substantial challenge.In this study,we used MXenes as a framework for NH_(4)V_(4)O_(10)(NVO)construction and developed electrodes that combined the high capacity of NVO with the excellent conductivity of MXene/carbon nanofibers(MCNFs).We explored the electrochemical characteristics of electrodes with varying NVO contents.Considering the distinctive layered structure of NVO,the outstanding conductivity of MCNFs,and the strong synergies between the two components.NVO-MCNFs exhibited better charge transfer compared with earlier materials,as well as more ion storage sites,excellent conductivity,and short ion diffusion pathways.A composite electrode with optimized NVO content exhibited an excellent specific capacitance of 360.6mAh g^(-1) at 0.5 A g^(-1) and an outstanding rate performance.In particular,even at a high current density of 10 A g^(-1),the 32NVO-MCNF exhibited impressive cycling stability:88.6%over 2500 cycles.The mechanism involved was discovered via comprehensive characterization.We expect that the fabricated nanofibers will be useful in energy storage and conversion systems.展开更多
Classified as a non-Hermitian system,topological metasurface is one of the ideal platforms for exploring a striking property,that is,the exceptional point(EP).Recently,creating and encircling EP in metasurfaces has tr...Classified as a non-Hermitian system,topological metasurface is one of the ideal platforms for exploring a striking property,that is,the exceptional point(EP).Recently,creating and encircling EP in metasurfaces has triggered various progressive functionalities,including polarization control and optical holographic encoding.However,existing topological metasurfaces mostly rely on plasmonic materials,which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices.Additionally,conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms.Here,an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture.By massively screening the Si meta-atom geometry on the Si3N4 waveguide,a 2π-topological phase shift is obtained by encircling the EP.Through combining with the Pancharatnam-Berry(PB)phase,we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations.As a proof of concept,the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios,functioning as practical augmented reality(AR)functionalities.Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices,thus suggesting promising applications in next-generation AR devices,multiplexing information storage,and advanced optical displays.展开更多
Thermal conductivity is one of the most fundamental physical properties,playing a crucial role in a wide range of applications.In thermoelectric materials,which enable the direct conversion of heat into electricity,lo...Thermal conductivity is one of the most fundamental physical properties,playing a crucial role in a wide range of applications.In thermoelectric materials,which enable the direct conversion of heat into electricity,low thermal conductivity is essential to sustain a temperature gradient and enhance efficiency[1].Conversely,materials with high thermal conductivityyare becoming increasingly important in modern electronic technology.As advanced semiconductor chips and miniaturized electronic devices continue to evolve,the demand for efficient heat dissipation grows increasingly stronger[2].Effective thermal management is also critical in optoelectronics and electricvehicle-used batteries,where maintaining optimal operating temperatures is essential for performance and longevity.Given these diverse requirements,a deep understanding of thermal conductivity and the ability to tailor it for specific applications is both a scientific necessity and an engineering imperative.展开更多
Thermally activated delayed fluorescence(TADF)materials,which are constructed through intermolecular donoracceptor systems,have attracted widespread attention due to their numerous advantages,such as avoiding complica...Thermally activated delayed fluorescence(TADF)materials,which are constructed through intermolecular donoracceptor systems,have attracted widespread attention due to their numerous advantages,such as avoiding complicated synthesis and achieving a small singlet-triplet energy gap[1].展开更多
The multifrequency voltage(MFV)stress,including switching impulses and harmonics,commonly appearing in the modern power system will stimulate the multifrequency impedance dynamics behaviours of electrical insulation.T...The multifrequency voltage(MFV)stress,including switching impulses and harmonics,commonly appearing in the modern power system will stimulate the multifrequency impedance dynamics behaviours of electrical insulation.Therefore,this article presents a novel concept of insulation resilience response(IRR)by employing polymer insulation materials,which may be extended to electrical insulation resilience(EIR).The focus is on understanding reversible recovery performance and supporting physics-informed condition assessment for electrical insulation exposed to MFV.The underlying physical mechanisms and modelling methodologies are integrated to characterise the IRR behaviours of polymer insulation systems.The multifrequency dielectric/impedance properties of different resin dielectrics under diverse temperatures are comparatively investigated as proofofconcept cases.Furthermore,multidimensional sensitivity indicators are developed to quantify the electrical insulation resilience behaviour.A radar plot representation integrating resilience sensitivity indicators qualitatively assesses the IRR behaviours of polymer insulation systems.Additionally,a quantification methodology,including the resilience index(RI)and time-varied RI(TVRI),is proposed for the reversible recovery performance analysis for electrical insulation,respectively.Ultimately,an application-oriented framework derived from TVRI is provided to analyse the recovery performance evolution behaviours of electrical insulation under complex operating conditions.This offers a key theoretical foundation for insulation performance characterisation and condition analysis for high-voltage power equipment.展开更多
Spintronics exploits magnetic order parameters to encode binary information and utilizes spin-dependent transport for data processing[1].To date,most spintronic devices have been based on ferromagnetic materials,which...Spintronics exploits magnetic order parameters to encode binary information and utilizes spin-dependent transport for data processing[1].To date,most spintronic devices have been based on ferromagnetic materials,which offer straightforward information writing and reading through manipulation and detection of their magnetization.A prototypical device is the magnetic tunnel junction(MTJ),where non-volatile memory readout is achieved via the tunneling magnetoresistance(TMR)effect—distinct resistance states arising from parallel and antiparallel alignments of ferromagnetic electrodes.MTJs serve as the building blocks of magnetic random-access memories(MRAMs),which have already found commercial applications.展开更多
基金supported by the National Nature Science Foundation of China(NSFC)(Grant Nos.22275004,62274040,and 62304046)the Shanghai Science and Technology Committee(Grant No.22JC1410300)+2 种基金the Shanghai Key Laboratory of Novel Extreme Condition Materials(Grant No.22dz2260800)the National Key Research and Development Program of China(Grant No.2022YFE0137400)the Shanghai Science and Technology Innovationaction Plan(Grant No.24DZ3001200).
文摘High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(Nos.RS-2023-00217581 and RS-2023-00304768)the National Research Council of Science&Technology(NST)grant by the Korean Government(MSIT)(No.CAP 22073-000).
文摘Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and stable long-term cycling performance are essential.These essential aspects create a need for superior cathode materials,which represents a substantial challenge.In this study,we used MXenes as a framework for NH_(4)V_(4)O_(10)(NVO)construction and developed electrodes that combined the high capacity of NVO with the excellent conductivity of MXene/carbon nanofibers(MCNFs).We explored the electrochemical characteristics of electrodes with varying NVO contents.Considering the distinctive layered structure of NVO,the outstanding conductivity of MCNFs,and the strong synergies between the two components.NVO-MCNFs exhibited better charge transfer compared with earlier materials,as well as more ion storage sites,excellent conductivity,and short ion diffusion pathways.A composite electrode with optimized NVO content exhibited an excellent specific capacitance of 360.6mAh g^(-1) at 0.5 A g^(-1) and an outstanding rate performance.In particular,even at a high current density of 10 A g^(-1),the 32NVO-MCNF exhibited impressive cycling stability:88.6%over 2500 cycles.The mechanism involved was discovered via comprehensive characterization.We expect that the fabricated nanofibers will be useful in energy storage and conversion systems.
基金the National Key Research and Development Program of China(No.2022YFB3808600)the National Natural Science Foundation of China(No.12474391)+3 种基金the Fundamental Research Funds for the Central Universities(2042025kf0024)support from the National Natural Science Foundation of China(12474388)Guangdong Basic and Applied Basic Research Foundation(2025A1515011483)supported by the Center for NanoScience and Nanotechnology at Wuhan University.
文摘Classified as a non-Hermitian system,topological metasurface is one of the ideal platforms for exploring a striking property,that is,the exceptional point(EP).Recently,creating and encircling EP in metasurfaces has triggered various progressive functionalities,including polarization control and optical holographic encoding.However,existing topological metasurfaces mostly rely on plasmonic materials,which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices.Additionally,conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms.Here,an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture.By massively screening the Si meta-atom geometry on the Si3N4 waveguide,a 2π-topological phase shift is obtained by encircling the EP.Through combining with the Pancharatnam-Berry(PB)phase,we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations.As a proof of concept,the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios,functioning as practical augmented reality(AR)functionalities.Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices,thus suggesting promising applications in next-generation AR devices,multiplexing information storage,and advanced optical displays.
文摘Thermal conductivity is one of the most fundamental physical properties,playing a crucial role in a wide range of applications.In thermoelectric materials,which enable the direct conversion of heat into electricity,low thermal conductivity is essential to sustain a temperature gradient and enhance efficiency[1].Conversely,materials with high thermal conductivityyare becoming increasingly important in modern electronic technology.As advanced semiconductor chips and miniaturized electronic devices continue to evolve,the demand for efficient heat dissipation grows increasingly stronger[2].Effective thermal management is also critical in optoelectronics and electricvehicle-used batteries,where maintaining optimal operating temperatures is essential for performance and longevity.Given these diverse requirements,a deep understanding of thermal conductivity and the ability to tailor it for specific applications is both a scientific necessity and an engineering imperative.
文摘Thermally activated delayed fluorescence(TADF)materials,which are constructed through intermolecular donoracceptor systems,have attracted widespread attention due to their numerous advantages,such as avoiding complicated synthesis and achieving a small singlet-triplet energy gap[1].
基金supported by the Science and Technology Project of State Grid Corporation of China(Grant 5500-202455120A-1-1-ZN).
文摘The multifrequency voltage(MFV)stress,including switching impulses and harmonics,commonly appearing in the modern power system will stimulate the multifrequency impedance dynamics behaviours of electrical insulation.Therefore,this article presents a novel concept of insulation resilience response(IRR)by employing polymer insulation materials,which may be extended to electrical insulation resilience(EIR).The focus is on understanding reversible recovery performance and supporting physics-informed condition assessment for electrical insulation exposed to MFV.The underlying physical mechanisms and modelling methodologies are integrated to characterise the IRR behaviours of polymer insulation systems.The multifrequency dielectric/impedance properties of different resin dielectrics under diverse temperatures are comparatively investigated as proofofconcept cases.Furthermore,multidimensional sensitivity indicators are developed to quantify the electrical insulation resilience behaviour.A radar plot representation integrating resilience sensitivity indicators qualitatively assesses the IRR behaviours of polymer insulation systems.Additionally,a quantification methodology,including the resilience index(RI)and time-varied RI(TVRI),is proposed for the reversible recovery performance analysis for electrical insulation,respectively.Ultimately,an application-oriented framework derived from TVRI is provided to analyse the recovery performance evolution behaviours of electrical insulation under complex operating conditions.This offers a key theoretical foundation for insulation performance characterisation and condition analysis for high-voltage power equipment.
文摘Spintronics exploits magnetic order parameters to encode binary information and utilizes spin-dependent transport for data processing[1].To date,most spintronic devices have been based on ferromagnetic materials,which offer straightforward information writing and reading through manipulation and detection of their magnetization.A prototypical device is the magnetic tunnel junction(MTJ),where non-volatile memory readout is achieved via the tunneling magnetoresistance(TMR)effect—distinct resistance states arising from parallel and antiparallel alignments of ferromagnetic electrodes.MTJs serve as the building blocks of magnetic random-access memories(MRAMs),which have already found commercial applications.