期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High-pressure research on optoelectronic materials:Insights from in situ characterization methods
1
作者 Songhao Guo Yiqiang Zhan Xujie Lü 《Matter and Radiation at Extremes》 2025年第3期10-23,共14页
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt... High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications. 展开更多
关键词 optoelectronic materialswe x ray diffraction nonlinear optics situ characterization methods situ characterization optoelectronic materialswhich absorption spectroscopy optoelectronic materials
在线阅读 下载PDF
Seaweed-Inspired NH_(4)V_(4)O_(10)-Ti_(3)C_(2)T_(x) MXene/Carbon Nanofibers for High-Performance Aqueous Zinc-Ion Batteries
2
作者 Seulgi Kim Seojin Woo +4 位作者 Segi Byun Hyunki Kim Han Seul Kim Sang Mun Jeong Dongju Lee 《Energy & Environmental Materials》 2025年第3期49-57,共9页
Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and... Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and stable long-term cycling performance are essential.These essential aspects create a need for superior cathode materials,which represents a substantial challenge.In this study,we used MXenes as a framework for NH_(4)V_(4)O_(10)(NVO)construction and developed electrodes that combined the high capacity of NVO with the excellent conductivity of MXene/carbon nanofibers(MCNFs).We explored the electrochemical characteristics of electrodes with varying NVO contents.Considering the distinctive layered structure of NVO,the outstanding conductivity of MCNFs,and the strong synergies between the two components.NVO-MCNFs exhibited better charge transfer compared with earlier materials,as well as more ion storage sites,excellent conductivity,and short ion diffusion pathways.A composite electrode with optimized NVO content exhibited an excellent specific capacitance of 360.6mAh g^(-1) at 0.5 A g^(-1) and an outstanding rate performance.In particular,even at a high current density of 10 A g^(-1),the 32NVO-MCNF exhibited impressive cycling stability:88.6%over 2500 cycles.The mechanism involved was discovered via comprehensive characterization.We expect that the fabricated nanofibers will be useful in energy storage and conversion systems. 展开更多
关键词 Aqueous Zinc Ion Batteries seaweed inspired Ti C Tx MXene superior cathode materialswhich Electrochemical Characteristics energy storage devices Rate Performance Carbon Nanofibers
在线阅读 下载PDF
Creating topological exceptional point by on-chip all-dielectric metasurface
3
作者 Cheng Yi Zejing Wang +7 位作者 Yangyang Shi Shuai Wan Jiao Tang Wanlin Hu Zile Li Yongquan Zeng Qinghua Song Zhongyang Li 《Light(Science & Applications)》 2025年第9期2764-2771,共8页
Classified as a non-Hermitian system,topological metasurface is one of the ideal platforms for exploring a striking property,that is,the exceptional point(EP).Recently,creating and encircling EP in metasurfaces has tr... Classified as a non-Hermitian system,topological metasurface is one of the ideal platforms for exploring a striking property,that is,the exceptional point(EP).Recently,creating and encircling EP in metasurfaces has triggered various progressive functionalities,including polarization control and optical holographic encoding.However,existing topological metasurfaces mostly rely on plasmonic materials,which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices.Additionally,conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms.Here,an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture.By massively screening the Si meta-atom geometry on the Si3N4 waveguide,a 2π-topological phase shift is obtained by encircling the EP.Through combining with the Pancharatnam-Berry(PB)phase,we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations.As a proof of concept,the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios,functioning as practical augmented reality(AR)functionalities.Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices,thus suggesting promising applications in next-generation AR devices,multiplexing information storage,and advanced optical displays. 展开更多
关键词 plasmonic materialswhich all dielectric architecture exploring striking encircling ep polarization control ohmic losses exceptional point topological metasurfaces
原文传递
Dislocations:a ma wand to tunethermal
4
作者 Jinfeng Dong Jing-Feng Li 《Science China Materials》 2025年第8期2993-2994,共2页
Thermal conductivity is one of the most fundamental physical properties,playing a crucial role in a wide range of applications.In thermoelectric materials,which enable the direct conversion of heat into electricity,lo... Thermal conductivity is one of the most fundamental physical properties,playing a crucial role in a wide range of applications.In thermoelectric materials,which enable the direct conversion of heat into electricity,low thermal conductivity is essential to sustain a temperature gradient and enhance efficiency[1].Conversely,materials with high thermal conductivityyare becoming increasingly important in modern electronic technology.As advanced semiconductor chips and miniaturized electronic devices continue to evolve,the demand for efficient heat dissipation grows increasingly stronger[2].Effective thermal management is also critical in optoelectronics and electricvehicle-used batteries,where maintaining optimal operating temperatures is essential for performance and longevity.Given these diverse requirements,a deep understanding of thermal conductivity and the ability to tailor it for specific applications is both a scientific necessity and an engineering imperative. 展开更多
关键词 enhance efficiency converselymaterials thermal conductivityyare thermoelectric materialswhich electronic technologyas thermal conductivity semiconductor chips sustain temperature gradient miniaturized electronic devices
原文传递
Supramolecular thermally activated delayed fluorescence polymers:a new avenue for rapid and visual detection of trace benzene
5
作者 Jingyu Chen Jiong Zhou 《Science China Chemistry》 2025年第11期5345-5346,共2页
Thermally activated delayed fluorescence(TADF)materials,which are constructed through intermolecular donoracceptor systems,have attracted widespread attention due to their numerous advantages,such as avoiding complica... Thermally activated delayed fluorescence(TADF)materials,which are constructed through intermolecular donoracceptor systems,have attracted widespread attention due to their numerous advantages,such as avoiding complicated synthesis and achieving a small singlet-triplet energy gap[1]. 展开更多
关键词 supramolecular polymers thermally activated delayed fluorescence intermolecular donor acceptor systems benzene detection intermolecular donoracceptor systemshave thermally activated delayed fluorescence tadf materialswhich
原文传递
Insulation Resilience Response in High-Voltage Power Equipment:Theories,Methods and Application Guidelines
6
作者 Xize Dai Jian Hao +2 位作者 Alberto Rumi Claus Leth Bak Ruijin Liao 《High Voltage》 2025年第5期1235-1246,共12页
The multifrequency voltage(MFV)stress,including switching impulses and harmonics,commonly appearing in the modern power system will stimulate the multifrequency impedance dynamics behaviours of electrical insulation.T... The multifrequency voltage(MFV)stress,including switching impulses and harmonics,commonly appearing in the modern power system will stimulate the multifrequency impedance dynamics behaviours of electrical insulation.Therefore,this article presents a novel concept of insulation resilience response(IRR)by employing polymer insulation materials,which may be extended to electrical insulation resilience(EIR).The focus is on understanding reversible recovery performance and supporting physics-informed condition assessment for electrical insulation exposed to MFV.The underlying physical mechanisms and modelling methodologies are integrated to characterise the IRR behaviours of polymer insulation systems.The multifrequency dielectric/impedance properties of different resin dielectrics under diverse temperatures are comparatively investigated as proofofconcept cases.Furthermore,multidimensional sensitivity indicators are developed to quantify the electrical insulation resilience behaviour.A radar plot representation integrating resilience sensitivity indicators qualitatively assesses the IRR behaviours of polymer insulation systems.Additionally,a quantification methodology,including the resilience index(RI)and time-varied RI(TVRI),is proposed for the reversible recovery performance analysis for electrical insulation,respectively.Ultimately,an application-oriented framework derived from TVRI is provided to analyse the recovery performance evolution behaviours of electrical insulation under complex operating conditions.This offers a key theoretical foundation for insulation performance characterisation and condition analysis for high-voltage power equipment. 展开更多
关键词 insulation resilience response understanding reversible recovery performance insulation resilience response irr power system polymer insulation materialswhich electrical insulationthereforethis multifrequency impedance dynamics behaviours electrical insulation resilience eir
在线阅读 下载PDF
Molecular ferroelectric altermagnetism by design
7
作者 Ding-Fu Shao Evgeny Y.Tsymbal 《Science China(Physics,Mechanics & Astronomy)》 2025年第12期29-30,共2页
Spintronics exploits magnetic order parameters to encode binary information and utilizes spin-dependent transport for data processing[1].To date,most spintronic devices have been based on ferromagnetic materials,which... Spintronics exploits magnetic order parameters to encode binary information and utilizes spin-dependent transport for data processing[1].To date,most spintronic devices have been based on ferromagnetic materials,which offer straightforward information writing and reading through manipulation and detection of their magnetization.A prototypical device is the magnetic tunnel junction(MTJ),where non-volatile memory readout is achieved via the tunneling magnetoresistance(TMR)effect—distinct resistance states arising from parallel and antiparallel alignments of ferromagnetic electrodes.MTJs serve as the building blocks of magnetic random-access memories(MRAMs),which have already found commercial applications. 展开更多
关键词 data processing magnetic tunnel junction mtj where spintronics spintronic devices molecular ferroelectric tunneling magnetoresistance tmr effect distinct resistance states arisi ferromagnetic materialswhich altermagnetism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部