In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for s...In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12374109)the National Key Research and Development Program of China (Grant No.2023YFA1406600)。
文摘In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.