期刊文献+
共找到248,963篇文章
< 1 2 250 >
每页显示 20 50 100
Oxidation Kinetics of Aluminum Powders in a Gas Fluidized Bed Reactor in the Potential Application of Surge Arresting Materials
1
作者 Hong Shih 《Materials Sciences and Applications》 2019年第3期253-292,共40页
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre... In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general. 展开更多
关键词 Aluminum Spherical Power GAS FLUIDIZATION Bed Oxidation Mechanism Oxide Growth Rate Gibbs Free Energy Ellingham Diagram Mathematical Modeling Dynamic System Plasma DIFFUSION DIFFUSION Coefficient Crystallographic Defect Vacancy Pressure Temperature Flow Laplace Transform Equation Boundary Condition Ficks Second Law Software Experimental Theoretical SURGE ARRESTING materials Analytical Solution
在线阅读 下载PDF
Engineering of copper sulfide-based nanomaterials for thermoelectric application
2
作者 Binqi He Kai Zhang Maiyong Zhu 《Green Energy & Environment》 2025年第4期619-688,共70页
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.... In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials. 展开更多
关键词 NANOmaterials thermoelectric materials organic thermoelectric materialsthephonon diminishing energy resources sustainable development solid phase method greenhouse effectthermoelectric materials inorganic thermoelectric materialscopper sulfide compounds
在线阅读 下载PDF
Highlights of global magnesium materials research in 2024
3
作者 Yan Yang Xiaoming Xiong +3 位作者 Jing Chen Xianhua Chen Xiaodong Peng Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第5期1855-1858,共4页
Magnesium(Mg)and its alloys have been identified as one of the most promising structural,energy and biomaterials owing to their exceptional combination of properties.These include low density,high specific strength,go... Magnesium(Mg)and its alloys have been identified as one of the most promising structural,energy and biomaterials owing to their exceptional combination of properties.These include low density,high specific strength,good damping,high castability,high capacity of hydrogen storage。 展开更多
关键词 hydrogen storage BIOmaterials structural materials low density energy materials high specific strength global magnesium materials research good damping
在线阅读 下载PDF
Use of Polymeric Materials in Construction to Improve Durability & Sustainability
4
作者 Waseem Ahmad Khatri Mohammed Al Mehthel +2 位作者 Oscar Salazar Mirza Baig Saleh Al Wohaibi 《World Journal of Engineering and Technology》 2025年第1期12-38,共27页
Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment ... Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment that cost the world economy $2.5 trillion and this translates to 3.4% of world gross domestic product. This paper presents several examples that show how the use of the nonmetallic materials improved sustainability and life cycles in the built environment by removing the corrosion issue from its root and using durable NM polymers in construction. The paper details recently patented Aramco technology for the use of nonmetallic paving panels that could be used as an alternative to concrete and asphalt paving. Other case studies presented cover use of GFRP Poles for traffic signs and signal poles to replace traditional steel poles. Details of developments for specialist structural application in bridges, in architectural applications, polymers in soils, fibers in pavement manholes and bendable concrete are presented. 展开更多
关键词 Non-Metallic materials Corrosion DURABILITY Non-Metallic Paving Metals Building and Construction Paving Panels Bridges ARCHITECTURAL Polymers Glass Fiber Reinforced Polymers (GFRP)
在线阅读 下载PDF
A Review: On Smart Materials Based on Some Polysaccharides;within the Contextual Bigger Data, Insiders, “Improvisation” and Said Artificial Intelligence Trends 被引量:1
5
作者 Serge Rebouillat Fernand Pla 《Journal of Biomaterials and Nanobiotechnology》 2019年第2期41-77,共37页
Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new conte... Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry. 展开更多
关键词 POLYSACCHARIDES Cellulose Hemicelluloses Chitosan Alginate Composites Blends Hydrogels Smart materials Electro-Active Papers Sensors Actuators BIGGER DATA Innovation Science in Education Jazz 4C CRAC
暂未订购
Postdoctoral Openings in Wenzhou University(China)for Chemistry,Chemical Engineering and Materials Science
6
《Carbon Energy》 2025年第5期202-202,共1页
About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials... About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials Science.The collegehas its Chemistry program ranking ESI Top 6‰ worldwide,and Materials Scienceprogram ranking 589th in the world since 2023. 展开更多
关键词 postdoctoral openings materials science Wenzhou University CHEMISTRY materials scienceprogram materials sciencethe Zhejiang Province chemical engineering
在线阅读 下载PDF
High-pressure research on optoelectronic materials:Insights from in situ characterization methods
7
作者 Songhao Guo Yiqiang Zhan Xujie Lü 《Matter and Radiation at Extremes》 2025年第3期10-23,共14页
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt... High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications. 展开更多
关键词 optoelectronic materialswe x ray diffraction nonlinear optics situ characterization methods situ characterization optoelectronic materialswhich absorption spectroscopy optoelectronic materials
在线阅读 下载PDF
Technical Note and Brief Overview of the Materials Science and Technology along with Designing Aspects for Development of Spintronic Devices with Optimum Efficiency 被引量:1
8
作者 Ritu Walia Kamal Nain Chopra 《Journal of Materials Science and Chemical Engineering》 2020年第4期98-105,共8页
One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication... One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness. 展开更多
关键词 materials Science Technology and DESIGNING ASPECTS of SPINTRONIC Devices Epitaxial growth Double Ion Beam Sputtering Technique Magnetic Tunnel JUNCTIONS Giant Magneto Resistance
在线阅读 下载PDF
Carbon-based materials for potassium-ion battery anodes:Storage mechanisms and engineering strategies
9
作者 Hyun Chul Kim Hongjung Kim +2 位作者 Sung Oh Moon Changshin Jo Ho Seok Park 《Journal of Energy Chemistry》 2025年第6期764-796,I0016,共34页
Recently,potassium-ion batteries(PIBs)have received significant attention in the energy storage field owing to their high-power output,fast charging capability,natural abundance,and environmental sustainability.Herein... Recently,potassium-ion batteries(PIBs)have received significant attention in the energy storage field owing to their high-power output,fast charging capability,natural abundance,and environmental sustainability.Herein,we comprehensively review recent advancements in the design and development of carbon-based anode materials for PIBs anodes,covering graphite,hard carbon,alloy and conversion materials with carbon,and carbon host for K metal deposition.Chemical strategies such as structural engineering,heteroatom-doping,and surface modifications are highlighted to improve electrochemical performances as well as to resolve technical challenges,such as electrode instability,low initial Coulombic efficiency,and electrolyte compatibility.Furthermore,we discuss the fundamental understanding of potassium-ion storage mechanisms of carbon-based materials and their correlation with electrochemical performance.Finally,we present the current challenges and future research directions for the practical implementation of carbon-based anodes to enhance their potential as next-generation energy storage materials for PIBs.This review aims to provide our own insights into innovative design strategies for advanced PIB's anode through the chemical and engineering strategies. 展开更多
关键词 POTASSIUM Potassium-ion batteries Anode materials Carbon materials Energy storage GRAPHITE Hard carbon Carbon host
在线阅读 下载PDF
Preface to the Special Issue:Thermoelectric Materials and Devices
10
作者 Gangjian Tan 《Acta Metallurgica Sinica(English Letters)》 2025年第5期705-706,共2页
We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promisin... We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promising technology for sustainable energy solutions,enabling efficient conversion between heat and electricity.This special collection highlights the latest advancements in the field,showcasing cutting-edge research and fostering interdisciplinary collaboration among researchers worldwide. 展开更多
关键词 thermoelectric materials sustainable energy sustainable energy solutionsenabling acta metallurgica sinica english heat electricity conversion interdisciplinary collaboration thermoelectric devices materials devicesthermoelectric materials devices
原文传递
Postdoctoral Openings in Wenzhou University(China)for Chemistry,Chemical Engineering and Materials Science
11
《Carbon Energy》 2025年第1期312-312,共1页
About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials... About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials Science.The college has its Chemistry program ranking ESI Top 6%o worldwide,and Materials Science program ranking 589th in the world since2023.The college has led publications appearing in journals such as Nat.Catal.,Nat.Commun.,Sci.Adv.,J.Am.Chem.Soc.,Angew.Chem. 展开更多
关键词 postdoctoral openings Wenzhou University materials science CHEMISTRY materials sciencethe Zhejiang Province chemical engineering chemistrychemical engineering
在线阅读 下载PDF
Constructing the discrete gradient structure for enhancing interfacial bond strength of Ti6Al4V/NiTi heterostructured materials
12
作者 Xingran Li Qiang Li +4 位作者 Minghao Nie Pengfei Jiang Shenghong Yan Yue Jiang Zhihui Zhang 《Journal of Materials Science & Technology》 2025年第11期266-271,共6页
1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to f... 1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to further reduce weight,functional elements like electric actuators can be substituted with intelligent materials like shape memory alloys(SMAs)[2,3].Among SMAs,NiTi alloy stands out for its sens-ing and actuation capabilities,significantly enhancing the safety and reliability of engineering structures[4,5].Integrating Ti6Al4V and NiTi alloys within a single component holds the potential to provide precise feedback on mechanical,thermal,or environmen-tal conditions[6,7]. 展开更多
关键词 shape memory alloys smas ti al v alloy intelligent materials smasniti alloy NITI electric actuators engineering structu Heterostructured materials
原文传递
Preface to Special Topic on Quantum Dot Semiconductor Optoelectronic Materials,Devices,and Characterization
13
作者 Zeke Liu Wanli Ma 《Journal of Semiconductors》 2025年第4期2-3,共2页
The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly ... The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics. 展开更多
关键词 surface chemical engineering techniques quantum dots class materials molecular materials colloidal quantum dots colloidal quantum dots qds REGULATE optoelectronic applications
在线阅读 下载PDF
Thermal and Electrical Percolation Transport Behavior in Composite Materials with Oriented Binary Fillers
14
作者 Jinxin Zhong Zhuoyu Wang +3 位作者 Xiaokun Gu Jun Wang Yuanyuan Wang Xin Qian 《Chinese Physics Letters》 2025年第8期83-96,共14页
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic... In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs. 展开更多
关键词 insulating polymer matrixhigh thermal conductivity electrical resistive integrated circuit packagingthermal interface materials tims must composite materials binary fillers metallic nanowires thermal percolationwhile thermal percolation
原文传递
Advances in high-pressure materials discovery enabled by machine learning
15
作者 Zhenyu Wang Xiaoshan Luo +5 位作者 Qingchang Wang Heng Ge Pengyue Gao Wei Zhang Jian Lv Yanchao Wang 《Matter and Radiation at Extremes》 2025年第3期1-9,共9页
Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in ... Crystal structure prediction(CSP)is a foundational computational technique for determining the atomic arrangements of crystalline materials,especially under high-pressure conditions.While CSP plays a critical role in materials science,traditional approaches often encounter significant challenges related to computational efficiency and scalability,particularly when applied to complex systems.Recent advances in machine learning(ML)have shown tremendous promise in addressing these limitations,enabling the rapid and accurate prediction of crystal structures across a wide range of chemical compositions and external conditions.This review provides a concise overview of recent progress in ML-assisted CSP methodologies,with a particular focus on machine learning potentials and generative models.By critically analyzing these advances,we highlight the transformative impact of ML in accelerating materials discovery,enhancing computational efficiency,and broadening the applicability of CSP.Additionally,we discuss emerging opportunities and challenges in this rapidly evolving field. 展开更多
关键词 machine learning crystal structure prediction csp determining atomic arrangements crystalline materialsespecially crystal structure prediction machine learning ml complex systemsrecent high pressure materials discovery
在线阅读 下载PDF
Neural network-based model for prediction of permanent deformation of unbound granular materials 被引量:1
16
作者 Ali Alnedawi Riyadh Al-Ameri Kali Prasad Nepal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1231-1242,共12页
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,... Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method. 展开更多
关键词 Flexible PAVEMENT design Unbound GRANULAR materials PERMANENT deformation (PD) Repeated load TRIAXIAL test (RLTT) PREDICTION models Artificial neural network (ANN)
在线阅读 下载PDF
High voltage cathode materials for rechargeable magnesium batteries:Structural aspects and electrochemical perspectives
17
作者 Dedy Setiawan Jiwon Hwang +1 位作者 Munseok S.Chae Seung-Tae Hong 《Journal of Magnesium and Alloys》 2025年第9期4167-4188,共22页
Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a m... Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes. 展开更多
关键词 gravimetric capacity cathode material energy storage high voltage cathode materials anode material structural aspects lithiumion batteries libs rechargeable magnesium batteries
在线阅读 下载PDF
Very low Ru loadings boosting performance of Ni-based dual-function materials during the integrated CO_(2)capture and methanation process
18
作者 Anastasios I.Tsiotsias Eleana Harkou +8 位作者 Nikolaos D.Charisiou Victor Sebastian Dhanaji R.Naikwadi Bart van der Linden Atul Bansode Dragos Stoian George Manos Achilleas Constantinou Maria A.Goula 《Journal of Energy Chemistry》 2025年第3期309-328,共20页
Herein,the effect of the Ru:Ni bimetallic composition in dual-function materials(DFMs)for the integrated CO_(2)capture and methanation process(ICCU-Methanation)is systematically evaluated and combined with a thorough ... Herein,the effect of the Ru:Ni bimetallic composition in dual-function materials(DFMs)for the integrated CO_(2)capture and methanation process(ICCU-Methanation)is systematically evaluated and combined with a thorough material characterization,as well as a mechanistic(in-situ diffuse reflectance infrared fourier-transform spectroscopy(in-situ DRIFTS))and computational(computational fluid dynamics(CFD)modelling)investigation,in order to improve the performance of Ni-based DFMs.The bimetallic DFMs are comprised of a main Ni active metallic phase(20 wt%)and are modified with low Ru loadings in the 0.1-1 wt%range(to keep the material cost low),supported on Na_(2)O/Al_(2)O_(3).It is shown that the addition of even a very low Ru loading(0.1-0.2 wt%)can drastically improve the material reducibility,exposing a significantly higher amount of surface-active metallic sites,with Ru being highly dispersed over the support and the Ni phase,while also forming some small Ru particles.This manifests in a significant enhancement in the CH_(4)yield and the CH_(4)production kinetics during ICCU-Methanation(which mainly proceeds via formate intermediates),with 0.2 wt%Ru addition leading to the best results.This bimetallic DFM also shows high stability and a relatively good performance under an oxidizing CO_(2)capture atmosphere.The formation rate of CH_(4)during hydrogenation is then further validated via CFD modelling and the developed model is subsequently applied in the prediction of the effect of other parameters,including the inlet H_(2)concentration,inlet flow rate,dual-fu nction material weight,and reactor internal diameter. 展开更多
关键词 Dual-function materials Integrated CO_(2)capture and methanation Bimetallic materials Nickel-ruthenium Reducibility in-situ DRIFTS CFD modelling
在线阅读 下载PDF
Functionalization,Properties and Applications of Hydrogenated Two-Dimensional Materials
19
作者 Shakeel Ahmed Faizah Altaf +7 位作者 Rajesh Kumar Manavalan Ranjith Kumar Dharman Kashif Naseem Jahanzeb Khan Baoji Miao Sung Yeol Kim Han Zhang Joice Sophia Ponraj 《Transactions of Tianjin University》 2025年第3期205-269,共65页
Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes... Hydrogenated two-dimensional(2D)materials have gained significant attention due to their tunable properties,which can be engineered through various functionalization techniques.This review discusses hydrogenated Xenes,a new class of fully hydrogenated mono-elemental 2D materials,including graphane,germanane,silicane,and stanane.Hydrogenation enhances the properties of Xenes,making them transparent,mechanically strong,electrically conductive,and rare.These materials off er a unique combination of characteristics that make them highly desirable for a variety of advanced applications in energy storage,organic electronics,and optoelectronics.Xenes such as silicane and germanane are semiconductors with tunable bandgaps,making them ideal for use in transistors,logic circuits,and sensors.Their electronic and optical properties can be finely adjusted,allowing them to be used in high-performance devices like LEDs,solar cells,and photodetectors.Furthermore,hydrogenated Xenes show potential in applications like batteries,supercapacitors,hydrogen storage,piezoelectricity,and biosensing,owing to their high surface area and versatility.This review also explores the impact of various hydrogenation techniques,including plasma treatment,wet chemical methods,and electrochemical hydrogenation,on the electronic,mechanical,thermal,optical,and magnetic properties of these materials.Advanced characterization techniques,such as X-ray absorption spectroscopy(XANES),have provided valuable insights into the electronic structure and bonding environments of these materials.Finally,the paper highlights the challenges and limitations of hydrogenation,including structural instability and environmental concerns,while discussing the future prospects and advancements needed to harness the full potential of hydrogenated 2D materials.This review serves as a comprehensive resource for researchers aiming to explore the applications of hydrogenated Xenes in next-generation technologies. 展开更多
关键词 Hydrogenation xanes 2D materials GRAPHANE Germanane SILICANE Stanene Bandgap tuning Energy storage
在线阅读 下载PDF
Bioactive materials in orthopedics:prospects and clinical translation challenges
20
作者 Jia-Pei Yao Yu-Ting Sun +1 位作者 Cheng-Long Liu Xin-Die Zhou 《Biomedical Engineering Communications》 2025年第4期72-74,共3页
Introduction The global burden of orthopedic diseases has reached unprecedented levels,with recent epidemiological data revealing that musculoskeletal conditions affect over 1.71 billion people worldwide,representing ... Introduction The global burden of orthopedic diseases has reached unprecedented levels,with recent epidemiological data revealing that musculoskeletal conditions affect over 1.71 billion people worldwide,representing a 150%increase since 1990[1].By 2050,the number of individuals aged 60 and above requiring orthopedic interventions is projected to exceed 2.1 billion,with osteoporosis alone affecting 200 million people globally. 展开更多
关键词 clinical translation global burden epidemiological data orthopedic interventions bioactive materials OSTEOPOROSIS musculoskeletal conditions ORTHOPEDICS
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部