In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new conte...Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry.展开更多
One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication...One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.展开更多
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,...Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These mater...As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.展开更多
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics....In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.展开更多
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) a...Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) are the stress configurations used in the experimental set-up to simulate the passing axle loads. Some researchers and standard testing protocols suggest a rest period of varying durations after a loading phase. A thorough review of existing literature and practises has revealed that there is no agreement about the effect of the rest period of vertical stress pulse on the deformation behaviour of the UGMs. Therefore,the main objective of this study is to investigate the effect of repeated stress rest period on the deformation behaviour of UGMs experimentally. Experiments are conducted, both with and without rest period, using basalt and granite crushed rocks from Victoria, Australia. Furthermore, in order to gain insight into the effect of the rest period, finite element modelling is also developed. Both the experimental and modelling results show that the rest period has a noticeable effect on both resilient and permanent deformation behaviours of UGMs. It is, therefore, recommended to take extra precautions while adopting a particular standard testing protocol and to supplement the results by additional tests with different loading configurations.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
Magnesium(Mg)and its alloys have been identified as one of the most promising structural,energy and biomaterials owing to their exceptional combination of properties.These include low density,high specific strength,go...Magnesium(Mg)and its alloys have been identified as one of the most promising structural,energy and biomaterials owing to their exceptional combination of properties.These include low density,high specific strength,good damping,high castability,high capacity of hydrogen storage。展开更多
Resorbable bioceramics are attractive for medical applications such as bone substitution. Biochemical analysis on cells cultured on these biomaterials is vital to predict the impact of the materials in vivo and RNA ex...Resorbable bioceramics are attractive for medical applications such as bone substitution. Biochemical analysis on cells cultured on these biomaterials is vital to predict the impact of the materials in vivo and RNA extraction is an essential step in gene expression study using RT-qPCR. In this study, we describe simple modifications to the TRIzol? RNA extraction protocol widely used in biology and these allow high-yield extraction of RNA from cells on resorbable calcium phosphates. Without the modifications, RNA is trapped in the co-precipitated calcium compounds, rendering TRIzol? extraction method infeasible. Among the modifications, the use of extra TRIzol? to dilute the lysate before the RNA precipitation step is critical for extraction of RNA from porous ?-tricalcium phosphate (?-TCP) discs. We also investigate the rationale behind the undesirable precipitation so as to provide clues about the modifications required for other resorbable materials with high application potential in bone tissue engineering.展开更多
Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment ...Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment that cost the world economy $2.5 trillion and this translates to 3.4% of world gross domestic product. This paper presents several examples that show how the use of the nonmetallic materials improved sustainability and life cycles in the built environment by removing the corrosion issue from its root and using durable NM polymers in construction. The paper details recently patented Aramco technology for the use of nonmetallic paving panels that could be used as an alternative to concrete and asphalt paving. Other case studies presented cover use of GFRP Poles for traffic signs and signal poles to replace traditional steel poles. Details of developments for specialist structural application in bridges, in architectural applications, polymers in soils, fibers in pavement manholes and bendable concrete are presented.展开更多
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and...The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.展开更多
Since the Third Plenary Session of the 11 thCentral Committee of the Communist Party of China( CPC),with the promotion and development of traditional Chinese medicine(TCM),the pace of TCM nursing work has been acceler...Since the Third Plenary Session of the 11 thCentral Committee of the Communist Party of China( CPC),with the promotion and development of traditional Chinese medicine(TCM),the pace of TCM nursing work has been accelerated in nationwide,and a group of integrated Chinese and western medicine nurses have been cultivated preliminarily. However,professional nurses of integrated Chinese and western medicine are still deficient extremely. The target of talent cultivation,based on the theory of "focusing on humanism,expanding diathesis,and enhancing practice to highlight the accommodation and integration of nurses of integrated traditional Chinese and western medicine",is to cultivate competent,practical and interdisciplinary senior nursing talents with strong professional basis,skilled operations,rich humanistic literacy,and sharp innovative spirit who not only master modern nursing knowledge and skills,but also can perform comprehensive nursing under the guidance of TCM theory of holistic concept and syndrome differentiation and nursing. This study,through investigating and analyzing the settings of3-year nursing professional courses in about 20 senior medical colleges,including senior nursing education of TCM,reformed the development of professional nursing courses of integrated Chinese and western medicine and the establishment of educational materials according to the course settings and educational work modes,so as to analyze the current status of nursing education of integrated Chinese and western medicine,determine course targets,and establish course system and educational work modes.展开更多
Corundum porous materials of particle-packing type with different contents of in situ formed LaAl11O18were prepared using tabular corundum,reactive alumina and La2O3 powder as raw materials.The effects of the introduc...Corundum porous materials of particle-packing type with different contents of in situ formed LaAl11O18were prepared using tabular corundum,reactive alumina and La2O3 powder as raw materials.The effects of the introduction of LaAl11O18 on the microstructure.phase composition and properties of the porous materials were investigated.The specimens were characterized by scanning electron microscopy.X-ray diffraction and mercury porosimetry.Results show that platelet-like LaAl11O18 is formed in situ by the reactions of La2O3 and Al2O3.With a certain amount of La2O3 added.the cold crushing strength,cold modulus of rupture and hot modulus of rupture(1400 x 0.5 h) of the specimens are increased,and the air permeability is improved simultaneously.However.upon further increasing the amount of La2O3 added,the mechanical properties and air permeability of the porous materials then decrease gradually owing to the increased numbers of pores and cracks in the bonding phase.The enhanced mechanical properties of the specimens with La2O3 added are attributed to the strengthening effects of plate-like LaAl11O18 in the bonding phase and to the activated sintering of both Al2O3 powder and corundum coarse aggregate for the diffusion of La3+in Al2O3 lattice.In addition,the improved air permeability of the specimens should be related to the decreased content of pores in the bonding phase and the reduced number of interfacial cracks.展开更多
About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials...About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials Science.The collegehas its Chemistry program ranking ESI Top 6‰ worldwide,and Materials Scienceprogram ranking 589th in the world since 2023.展开更多
The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletio...The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed.展开更多
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt...High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.展开更多
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry.
文摘One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.
文摘Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
文摘As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.
文摘In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
文摘Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) are the stress configurations used in the experimental set-up to simulate the passing axle loads. Some researchers and standard testing protocols suggest a rest period of varying durations after a loading phase. A thorough review of existing literature and practises has revealed that there is no agreement about the effect of the rest period of vertical stress pulse on the deformation behaviour of the UGMs. Therefore,the main objective of this study is to investigate the effect of repeated stress rest period on the deformation behaviour of UGMs experimentally. Experiments are conducted, both with and without rest period, using basalt and granite crushed rocks from Victoria, Australia. Furthermore, in order to gain insight into the effect of the rest period, finite element modelling is also developed. Both the experimental and modelling results show that the rest period has a noticeable effect on both resilient and permanent deformation behaviours of UGMs. It is, therefore, recommended to take extra precautions while adopting a particular standard testing protocol and to supplement the results by additional tests with different loading configurations.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
文摘Magnesium(Mg)and its alloys have been identified as one of the most promising structural,energy and biomaterials owing to their exceptional combination of properties.These include low density,high specific strength,good damping,high castability,high capacity of hydrogen storage。
文摘Resorbable bioceramics are attractive for medical applications such as bone substitution. Biochemical analysis on cells cultured on these biomaterials is vital to predict the impact of the materials in vivo and RNA extraction is an essential step in gene expression study using RT-qPCR. In this study, we describe simple modifications to the TRIzol? RNA extraction protocol widely used in biology and these allow high-yield extraction of RNA from cells on resorbable calcium phosphates. Without the modifications, RNA is trapped in the co-precipitated calcium compounds, rendering TRIzol? extraction method infeasible. Among the modifications, the use of extra TRIzol? to dilute the lysate before the RNA precipitation step is critical for extraction of RNA from porous ?-tricalcium phosphate (?-TCP) discs. We also investigate the rationale behind the undesirable precipitation so as to provide clues about the modifications required for other resorbable materials with high application potential in bone tissue engineering.
文摘Building and construction sector, including infrastructures, are facing many challenges which are scarcity of raw materials, CO2 emissions, lower construction efficiency, and deterioration under corrosive environment that cost the world economy $2.5 trillion and this translates to 3.4% of world gross domestic product. This paper presents several examples that show how the use of the nonmetallic materials improved sustainability and life cycles in the built environment by removing the corrosion issue from its root and using durable NM polymers in construction. The paper details recently patented Aramco technology for the use of nonmetallic paving panels that could be used as an alternative to concrete and asphalt paving. Other case studies presented cover use of GFRP Poles for traffic signs and signal poles to replace traditional steel poles. Details of developments for specialist structural application in bridges, in architectural applications, polymers in soils, fibers in pavement manholes and bendable concrete are presented.
文摘The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.
文摘Since the Third Plenary Session of the 11 thCentral Committee of the Communist Party of China( CPC),with the promotion and development of traditional Chinese medicine(TCM),the pace of TCM nursing work has been accelerated in nationwide,and a group of integrated Chinese and western medicine nurses have been cultivated preliminarily. However,professional nurses of integrated Chinese and western medicine are still deficient extremely. The target of talent cultivation,based on the theory of "focusing on humanism,expanding diathesis,and enhancing practice to highlight the accommodation and integration of nurses of integrated traditional Chinese and western medicine",is to cultivate competent,practical and interdisciplinary senior nursing talents with strong professional basis,skilled operations,rich humanistic literacy,and sharp innovative spirit who not only master modern nursing knowledge and skills,but also can perform comprehensive nursing under the guidance of TCM theory of holistic concept and syndrome differentiation and nursing. This study,through investigating and analyzing the settings of3-year nursing professional courses in about 20 senior medical colleges,including senior nursing education of TCM,reformed the development of professional nursing courses of integrated Chinese and western medicine and the establishment of educational materials according to the course settings and educational work modes,so as to analyze the current status of nursing education of integrated Chinese and western medicine,determine course targets,and establish course system and educational work modes.
基金supported by the National Natural Science Foundation of China(51672195,51474166)the Key Program of Natural Science Foundation of Hubei Province,China(2017CFA004).
文摘Corundum porous materials of particle-packing type with different contents of in situ formed LaAl11O18were prepared using tabular corundum,reactive alumina and La2O3 powder as raw materials.The effects of the introduction of LaAl11O18 on the microstructure.phase composition and properties of the porous materials were investigated.The specimens were characterized by scanning electron microscopy.X-ray diffraction and mercury porosimetry.Results show that platelet-like LaAl11O18 is formed in situ by the reactions of La2O3 and Al2O3.With a certain amount of La2O3 added.the cold crushing strength,cold modulus of rupture and hot modulus of rupture(1400 x 0.5 h) of the specimens are increased,and the air permeability is improved simultaneously.However.upon further increasing the amount of La2O3 added,the mechanical properties and air permeability of the porous materials then decrease gradually owing to the increased numbers of pores and cracks in the bonding phase.The enhanced mechanical properties of the specimens with La2O3 added are attributed to the strengthening effects of plate-like LaAl11O18 in the bonding phase and to the activated sintering of both Al2O3 powder and corundum coarse aggregate for the diffusion of La3+in Al2O3 lattice.In addition,the improved air permeability of the specimens should be related to the decreased content of pores in the bonding phase and the reduced number of interfacial cracks.
文摘About us:The College of Chemistry and Materials Engineering(CME)in Wenzhou University(Zhejiang Province,China)is looking for postdoctoral candidates(up to 25)specialized in Chemistry,Chemical Engineering and Materials Science.The collegehas its Chemistry program ranking ESI Top 6‰ worldwide,and Materials Scienceprogram ranking 589th in the world since 2023.
基金supported by National Natural Science Foundation of China(Grant Nos.32201499,32222057,and 22478142)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012519,2023A0505050114,and 2024B1515040004)+1 种基金National Key Research and Development Project(Grant No 2023YFE0109600)State Key Laboratory of Advanced Papermaking and Paper-based Materials(2024C02).
文摘The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed.
基金supported by the National Nature Science Foundation of China(NSFC)(Grant Nos.22275004,62274040,and 62304046)the Shanghai Science and Technology Committee(Grant No.22JC1410300)+2 种基金the Shanghai Key Laboratory of Novel Extreme Condition Materials(Grant No.22dz2260800)the National Key Research and Development Program of China(Grant No.2022YFE0137400)the Shanghai Science and Technology Innovationaction Plan(Grant No.24DZ3001200).
文摘High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.