期刊文献+
共找到15,063篇文章
< 1 2 250 >
每页显示 20 50 100
The Materialized Lifestyle Under Consumer Culture Reflected in Sister Carrie 被引量:1
1
作者 李伟 《海外英语》 2011年第10X期278-278,282,共2页
In Sister Carrie, Theodore Dreiser depicts a consumer society, where consumption is viewed as an integral part of the social life. Living in such a consumption-dominated context, both Dreiser and his characters in Sis... In Sister Carrie, Theodore Dreiser depicts a consumer society, where consumption is viewed as an integral part of the social life. Living in such a consumption-dominated context, both Dreiser and his characters in Sister Carrie are unable to avoid its great impact. Consumer culture brands great marks on them, leading them to individualism, pragmatism and hedonism. Under such a context, people are united by their purchases into the web of consumer culture. 展开更多
关键词 SISTER CARRIE materialized LIFESTYLE CONSUMER CULTURE
在线阅读 下载PDF
Materialized Views Selection Problem in Decision Supporting Systems: Issues and Challenges
2
作者 Mohamed Ridani Mohamed Amnai 《Journal of Computer and Communications》 2022年第9期96-112,共17页
The data warehouse is the most widely used database structure in many decision support systems around the world. This is the reason why a lot of research has been conducted in the literature over the last two decades ... The data warehouse is the most widely used database structure in many decision support systems around the world. This is the reason why a lot of research has been conducted in the literature over the last two decades on their design, refreshment and optimization. The manipulation of hypercubes (cubes) of data is a frequently used operation in the design of multidimensional data warehouses, due to their better adaptation to OLAP (On-Line Analytical Processing). However, the updating of these hypercubes is a very complicated process due mainly to the mass and complexity of the data presented. The purpose of this paper is to present the state of the art of works based on multidimensional modeling using the hypercube as a unit of presentation of data stores. It starts with the base of this process which is the choice of the views (cubes) forming our data warehouse base. The objective of this work is to describe the state of the art of research works dealing with the selection of materialized views in decision support systems. 展开更多
关键词 Data Hypercube OLAP Data Warehouse materialized Views Selection
在线阅读 下载PDF
A Novel Hybrid Optimization Algorithm for Materialized View Selection from Data Warehouse Environments
3
作者 Popuri Srinivasarao Aravapalli Rama Satish 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1527-1547,共21页
Responding to complex analytical queries in the data warehouse(DW)is one of the most challenging tasks that require prompt attention.The problem of materialized view(MV)selection relies on selecting the most optimal v... Responding to complex analytical queries in the data warehouse(DW)is one of the most challenging tasks that require prompt attention.The problem of materialized view(MV)selection relies on selecting the most optimal views that can respond to more queries simultaneously.This work introduces a combined approach in which the constraint handling process is combined with metaheuristics to select the most optimal subset of DW views from DWs.The proposed work initially refines the solution to enable a feasible selection of views using the ensemble constraint handling technique(ECHT).The constraints such as self-adaptive penalty,epsilon(ε)-parameter and stochastic ranking(SR)are considered for constraint handling.These two constraints helped the proposed model select the finest views that minimize the objective function.Further,a novel and effective combination of Ebola and coot optimization algorithms named hybrid Ebola with coot optimization(CHECO)is introduced to choose the optimal MVs.Ebola and Coot have recently introduced metaheuristics that identify the global optimal set of views from the given population.By combining these two algorithms,the proposed framework resulted in a highly optimized set of views with minimized costs.Several cost functions are described to enable the algorithm to choose the finest solution from the problem space.Finally,extensive evaluations are conducted to prove the performance of the proposed approach compared to existing algorithms.The proposed framework resulted in a view maintenance cost of 6,329,354,613,784,query processing cost of 3,522,857,483,566 and execution time of 226 s when analyzed using the TPC-H benchmark dataset. 展开更多
关键词 MATERIALIZATION ensemble approach stochastic ranking optimization optimal view selection
在线阅读 下载PDF
Design and synthesis of KIT-5/Beta composites under varied hydrothermal temperatures and evaluation of their hydrodenitrogenation performance
4
作者 LIU Xing GUO Shaoqing +7 位作者 CUI Haitao LI Zhenrong LI Xin WANG Lei WU Xingjie WANG Xiaoxiao YUAN Lijing ZHAO Liangfu 《燃料化学学报(中英文)》 北大核心 2026年第1期46-57,共12页
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva... KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI). 展开更多
关键词 mesoporous-microporous material KIT-5/Beta composite NiWS QUINOLINE HYDRODENITROGENATION
在线阅读 下载PDF
Ligand-directed construction of cobalt-oxo cluster-based organic frameworks:Structural modulation,semiconductor,and antiferromagnetic properties
5
作者 SHI Jinlian LIU Xiaoru XU Zhongxuan 《无机化学学报》 北大核心 2026年第1期45-54,共10页
Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully construct... Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24. 展开更多
关键词 semi-rigid carboxylic acid ligands three-dimensional framework tetranuclear cobalt-oxo cluster semiconductor material antiferromagnetic magnetism
在线阅读 下载PDF
Call for Papers from Food Science of Animal Products
6
《肉类研究》 北大核心 2026年第1期I0018-I0018,共1页
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater... Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects. 展开更多
关键词 animal origin foods EGGS animal offals food materials MEAT MILK food science animal products issn e issn edible insects
在线阅读 下载PDF
Random State Approach to Quantum Computation of Electronic-Structure Properties
7
作者 Yiran Bai Feng Xiong Xueheng Kuang 《Chinese Physics Letters》 2026年第1期89-104,共16页
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v... Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials. 展开更多
关键词 periodic materials random state circuit random state quantum algorithms electronic structure properties density states aperiodic materials quantum algorithms quantum computation
原文传递
Study on the reactive material filled structure under impact loading:The self-distributed multipeak overpressure effect
8
作者 Jing'an Xiang Haifu Wang +2 位作者 Yueguang Yan Aoxin Liu Chao Ge 《Defence Technology(防务技术)》 2026年第1期193-209,共17页
The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen... The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed. 展开更多
关键词 Reactive material Impact Self-distributed OVERPRESSURE Multipeak
在线阅读 下载PDF
An Emerging Liquid‑Crystalline Conducting Polymer Thermoelectrics:Opportunities and Challenges
9
作者 Zhenqiang Ye Mingdong Zhang +3 位作者 Junyang Deng Lirong Liang Chunyu Du Guangming Chen 《Nano-Micro Letters》 2026年第3期240-273,共34页
Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are ga... Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are gaining prominence due to their unique combination of mechanical flexibility,environmental compatibility,and solution-processable fabrication.A notable candidate in this field is poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)(PBTTT),a liquid-crystalline conjugated polymer,with high charge carrier mobility and adaptability to melt-processing techniques.Recent advancements have propelled PBTTT’s figure of merit from below 0.1 to a remarkable 1.28 at 368 K,showcasing its potential for practical applications.This review systematically examines strategies to enhance PBTTT’s TE performance through doping(solution,vapor,and anion exchange doping),composite engineering,and aggregation state controlling.Recent key breakthroughs include ion exchange doping for stable charge modulation,multi-heterojunction architectures reducing thermal conductivity,and proton-coupled electron transfer doping for precise Fermi-level tuning.Despite great progress,challenges still persist in enhancing TE conversion efficiency,balancing or decoupling electrical conductivity,Seebeck coefficient and thermal conductivity,and leveraging melt-processing scalability of PBTTT.By bridging fundamental insights with applied research,this work provides a roadmap for advancing PBTTT-based TE materials toward efficient energy harvesting and wearable electronics. 展开更多
关键词 Thermoelectric materials POLYMER PBTTT LIQUID-CRYSTALLINE
在线阅读 下载PDF
Engineered Radiative Cooling Systems for Thermal-Regulating and Energy-Saving Applications
10
作者 Leqi Lei Ting Wu +8 位作者 Shuo Shi Yifan Si Chuanwei Zhi Kaisong Huang Jieqiong Yang Xinshuo Liang Shanshan Zhu Jinping Qu Jinlian Hu 《Nano-Micro Letters》 2026年第1期509-544,共36页
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for... Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications. 展开更多
关键词 Radiative cooling systems Engineered materials Thermal-regulating ENERGY-SAVING Smart applications
在线阅读 下载PDF
Bioinspired polydopamine interface reinforced boron-Viton composites with high structure stability and energy releasing efficiency
11
作者 Liu Yang Liu Yuezhou +2 位作者 Gao Fulei Liu Yingzhe Wang Yinglei 《Defence Technology(防务技术)》 2026年第1期330-339,共10页
Boron has attracted increasing attention in the field of high-energy explosives and propellants due to its high volume calorific value and mass calorific value.However,the complicated combustion process and low combus... Boron has attracted increasing attention in the field of high-energy explosives and propellants due to its high volume calorific value and mass calorific value.However,the complicated combustion process and low combustion efficiency hinder its wide application.To tackle this challenge,bioinspired polydopamine(PDA)interface reinforced boron-Viton composites,with high structure stability and excellent energy releasing efficiency,are designed and prepared,combining the interface regulation of PDA biomimetic materials and combustion promotion of fluoropolymers.Firstly,the stronger adsorption energy of PDA with boron compared to Viton is demonstrated by molecular dynamics simulations.Next,B@PDA@Viton is prepared by the combination of in-situ dopamine polymerization and solvent/nonsolvent method,and the double-layer core-shell structure is confirmed by XPS,FTIR,and TEM characterizations.TG-DSC analysis shows that B@PDA@Viton possesses superior thermal properties,with a 55.48%increase in oxidation heat compared to raw B.Furthermore,ignition and combustion performance tests indicate that B@PDA@Viton reduces ignition delay by 57.56%and increases heat of combustion by 68.63%relative to raw B.These findings elucidate the ignition and combustion mechanisms of B@PDA@Viton.This work not only developed high-performance boron-based composite fuels but also provided insights into the development of boron-based fuels. 展开更多
关键词 Boron powder POLYDOPAMINE Ignition and combustion PROPELLANT Energetic materials
在线阅读 下载PDF
Cement-Based Thermoelectric Materials, Devices and Applications
12
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Research Progress on High-Energy Rechargeable Sn-Based Batteries
13
作者 Yao Dong Rongli Wang Yingjian Yu 《Carbon Energy》 2026年第1期153-175,共23页
Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources,environmental compatibility,non-toxicity,corrosion resistance,and high hydrogen evolution overpotential.However,... Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources,environmental compatibility,non-toxicity,corrosion resistance,and high hydrogen evolution overpotential.However,the practical application of these batteries is hindered by challenges such as“dead Sn”shedding and hydrogen evolution side reactions.Extensive research has focused on improving the performance of Sn-based batteries.This paper provides a comprehensive review of the recent advancements in Sn-based battery research,including the selection of current collectors,electrolyte optimization,and the development of new cathode materials.The energy storage mechanisms and challenges of Sn-based batteries are discussed.Overall,this paper presents future perspectives of high-performance rechargeable Sn-based batteries and provides valuable guidance for developing Sn-based energy storage technologies. 展开更多
关键词 cathode materials current collectors dead Sn shedding electrolytes Sn-based batteries
在线阅读 下载PDF
Lignocellulose‑Mediated Gel Polymer Electrolytes Toward Next‑Generation Energy Storage
14
作者 Hongbin Yang Liyu Zhu +5 位作者 Wei Li Yinjiao Tang Xiaomin Li Ting Xu Kun Liu Chuanling Si 《Nano-Micro Letters》 2026年第3期290-329,共40页
The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and fla... The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs. 展开更多
关键词 Lignocellulosic materials Gel electrolytes Energy storage devices BATTERIES
在线阅读 下载PDF
Instructions for Authors
15
《International Journal of Minerals,Metallurgy and Materials》 2026年第1期F0002-F0002,共1页
International Journal of Minerals,Metallurgy and Materials is dedicated to the publication and the dissemination of original research articles (and occasional invited reviews) in the fields of Minerals,Metallurgy and ... International Journal of Minerals,Metallurgy and Materials is dedicated to the publication and the dissemination of original research articles (and occasional invited reviews) in the fields of Minerals,Metallurgy and Materials.It is covered by EI Compendex,SCI Expanded,Chemical Abstract,etc.Manuscript preparation The following components are required for a complete manuscript:Title,Author(s),Author affiliation(s),Abstract,Keywords,Main text,Acknowledgements and References. 展开更多
关键词 METALLURGY MINERALS research articles materials ei compendexsci complete manuscript titleauthor s author REVIEWS
在线阅读 下载PDF
Review of Flash Joule Heating for the Synthesis of Graphene and Other Functional Carbon Materials
16
作者 Zhiwu Tan Faisal Mahmood +8 位作者 Mengzhen Tian Yimeng Li Qingfa Zhang Zhong Ma Mingfeng Wang Weiwei Liu Shihong Zhang Haiping Yang Bin Li 《Carbon Energy》 2026年第1期223-252,共30页
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B... Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality. 展开更多
关键词 APPLICATIONS by products flash graphene flash Joule heating functional carbon materials upscaling
在线阅读 下载PDF
A high-energy powder with excellent combustion reaction performance:Surface modification strategy of boron powder based on non-thermal plasma
17
作者 Kangkang Li Jianyong Xu +9 位作者 Xiaoting Lei Mengzhe Yang Jing Liu Luqi Guo Pengfei Cui Dihua Ouyang Chunpei Yu He Cheng Jiahai Ye Wenchao Zhang 《Defence Technology(防务技术)》 2026年第1期289-300,共12页
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti... The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites. 展开更多
关键词 Oxide film materials Surface modification Boron powder Non-thermal plasma Combustion performance
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
18
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2D materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Crushing evolution in pebble bed based on a novel method:a crushable DEM study
19
作者 Jian Wang Ming‑Zhun Lei +4 位作者 Ming‑Zong Liu Qi‑Gang Wu Zi‑Cong Cai Kai‑Song Wang Hai‑Shun Deng 《Nuclear Science and Techniques》 2026年第1期212-224,共13页
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m... In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing. 展开更多
关键词 Crushing behavior Granular material Discrete element method Pebble bed Fractal theory
在线阅读 下载PDF
ABCA5 lipid transporter is associated with a reduced risk of Parkinson’s disease
20
作者 Jasmin Galper Nicolas Dzamko Woojin Scott Kim 《Neural Regeneration Research》 2026年第2期669-670,共2页
A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative... A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative diseases such as PD and Alzheimer’s disease(AD)and is thought to reflect lysosome dysfunction,lipid accumulation may also contribute to and be indicative of severe lysosomal dysfunction.Much is known about the detrimental effects of glucosylceramide accumulation in PD lysosomes. 展开更多
关键词 neurodegenerative diseases lipid transporter abca LYSOSOME protein build up Alzheimers disease cellular materials Parkinsons disease
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部