期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
锂电池正极材料多硫化碳炔的制备及电化学性能 被引量:15
1
作者 王维坤 王安邦 +1 位作者 曹高萍 杨裕生 《应用化学》 CAS CSCD 北大核心 2005年第4期367-371,共5页
为克服锂/硫电池的正极材料单质硫的导电性差、放电产物的部分溶解导致电池性能下降等问题,在“主链导电、侧链储能”思路下,设计并探索了一种新型正极材料多硫化碳炔。通过元素分析、13CNMR谱、Raman光谱及热分析测试技术对含碳炔结构... 为克服锂/硫电池的正极材料单质硫的导电性差、放电产物的部分溶解导致电池性能下降等问题,在“主链导电、侧链储能”思路下,设计并探索了一种新型正极材料多硫化碳炔。通过元素分析、13CNMR谱、Raman光谱及热分析测试技术对含碳炔结构的碳材料与单质硫在不同温度下的共热产物进行了表征。结果证明, 300℃下所得产物中多数硫以多硫链的形式化合在sp2杂化的碳主链上,生成接近理想多硫化碳炔的结构。该材料的放电容量高,大电流性能好(400mA/g的电流密度下放电比容量为773mA·h/g),循环性能较好(50次循环后,还具有350mA·h/g的容量),证明材料设计思路是可行的。 展开更多
关键词 正极材料 电化学性能 碳炔 硫化 锂电池 RAMAN光谱 制备 分析测试技术 sp^2杂化 放电比容量 电池性能 部分溶解 元素分析 ^13C NMR谱 放电容量 电流性能 电流密度 循环性能 设计思路 单质硫 导电性 产物 碳材料 近理想
在线阅读 下载PDF
Solid-state synthesis of Li[Li_(0.2)Mn_(0.56)Ni_(0.16)Co_(0.08)]O_2 cathode materials for lithium-ion batteries 被引量:1
2
作者 Wenjuan Hao Hanhui Zhan +3 位作者 Han Chen Yanhong Wang Qiangqiang Tan Fabing Su 《Particuology》 SCIE EI CAS CSCD 2014年第4期18-26,共9页
Layered Li[Li0.2Mn.56Ni0.6Co0.08]O2 cathode materials were synthesized via a solid-state reaction for Liion batteries, in which lithium hydroxide monohydrate, manganese dioxide, nickel monoxide, and cobalt monoxide w... Layered Li[Li0.2Mn.56Ni0.6Co0.08]O2 cathode materials were synthesized via a solid-state reaction for Liion batteries, in which lithium hydroxide monohydrate, manganese dioxide, nickel monoxide, and cobalt monoxide were employed as metal precursors. To uncover the relationship between the structure and electrochemical properties of the materials, synthesis conditions such as calcination temperature and time as well as quenching methods were investigated. For the synthesized Li[Li0.2Mn.56Ni0.6Co0.08]O2 materials, the metal components were found to be in the form of Mn4+, Ni2+, and Co3+, and their molar ratio was in good agreement with stoichiometric ratio of 0.56:0.16:0.08. Among them, the one synthesized at 800 ℃ for 12 h and subsequently quenched in air showed the best electrochemical performances, which had an initial discharge specific capacity and coulombic efficiency of 265.6 mAh/g and 84.0%, respectively, and when cycled at 0.5, 1, and 2 C, the corresponding discharge specific capacities were 237.3, 212.6, and 178.6 mAh/g, respectively. After recovered to 0.1 C rate, the discharge specific capacity became 259.5 mAh/g and the capacity loss was only 2.3% of the initial value at 0.1 C. This work suggests that the solid-state synthesis route is easy for preparing high performance Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for Li-ion batteries. 展开更多
关键词 Lithium-ion batteriesCathode materialsolid-state synthesisLithium-rich materialElectrochemical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部