The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method a...The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.展开更多
基金finantially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.