The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen...The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.T...The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade...Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte...The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ...High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.展开更多
This supplemental material contains three sections:(Ⅰ)Derivation of the Floquet lattice Hamiltonian;(Ⅱ)Surface states of the Floquet lattice Hamiltonian;(Ⅲ)Evolution of Floquet Weyl points and Fermi arcs with the i...This supplemental material contains three sections:(Ⅰ)Derivation of the Floquet lattice Hamiltonian;(Ⅱ)Surface states of the Floquet lattice Hamiltonian;(Ⅲ)Evolution of Floquet Weyl points and Fermi arcs with the increase of light amplitude;(Ⅳ)Formalism for light-induced anomalous Hall effects.展开更多
The ability to replicate the microenvironment of the human body through the fabrication of scaffolds is a significant achievement in the biomedical field.However,the search for the ideal scaffold is still in its infan...The ability to replicate the microenvironment of the human body through the fabrication of scaffolds is a significant achievement in the biomedical field.However,the search for the ideal scaffold is still in its infancy and there are significant challenges to overcome.In the modern era,the scientific community is increasingly turned to natural substances due to their superior biological ability,lower cost,biodegradability,and lower toxicity than synthetic lab-made products.Chitosan is a well-known polysaccharide that has recently garnered a high amount of attention for its biological activities,especially in 3D bone tissue engineering.Chitosan closely matches the native tissues and thus stands out as a popular candidate for bioprinting.This review focuses on the potential of chitosan-based scaffolds for advancements and the drawbacks in bone treatment.Chitosan-based nanocomposites have exhibited strong mechanical strength,water-trapping ability,cellular interaction,and biodegradability.Chitosan derivatives have also encouraged and provided different routes for treatment and enhanced biological activities.3D tailored bioprinting has opened new doors for designing and manufacturing scaffolds with biological,mechanical,and topographical properties.展开更多
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ...The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c...High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
The keratoprosthesis(KPro;artificial cornea)is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain visio...The keratoprosthesis(KPro;artificial cornea)is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision.The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty.The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea.Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells,modification of keratoprosthesis to support cornea cells remains elusive.Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials,but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase.The necrosis of stroma and spontaneous extrusion of the device,allow for maintenance of a precorneal tear layer,and play the role of ensuring a good optical surface and resisting bacterial infection.As a result,improvement in corneal cells has been the main aim of several recent investigations;some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells.The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.展开更多
A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength...A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength.The optimum ratio of the three early-strengthening agents was determined as 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate by response surface methodology.The effects of the ternary early-strengthening agent composed of calcium formate+triethanolamine(TEA)+lithium sulfate on cementitious pore sealing materials under the synergistic effect of quercetin were studied by means of the performance tests of compressive strength,fluidity,and setting time,and the microstructural characterizations of X-ray powder diffractometer(XRD),thermogravimetry(TG-DSC)and scanning electron microscopy(SEM).The study shows that the synergistic effect of ternary early-strengthening agent and quercetin forms a multi-performance composite admixture for cementitious materials.The best performance was obtained with the compounding scheme of 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate ternary early-strengthening agent and 0.05%quercetin.The compressive strength of 1,3,7,and 28 d are 94.8%,39.8%,42%,and 28%higher than those of the blank group,respectively.The initial time and final setting time are 41 and 57 minutes,respectively.According to the microscopic analysis,the network and fibrous C-S-H gels generated by ternary early-strengthening agents are attached to the surface promoted by quercetin,which forms skeleton support while thickening and solidifying the cement slurry,which enhances the early compressive strength of the cement-based materials.展开更多
Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary...Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.展开更多
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well...In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.展开更多
Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the...Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.展开更多
基金the support received from the National Natural Science Foundation of China(Grant No.12302460)the State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT24-02)。
文摘The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金supported by the National Natural Science Foundation of China(Grant No.52473121,52403370 and 52221006)Fundamental Research Funds for the Central Universities(buctrc202020,buctrc202312).
文摘The intricate hierarchical structure of musculoskeletal tissues,including bone and interface tissues,necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes.This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes.Building on the anatomical characteristics of bone and interfacial tissues,this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues,specifically focusing on methods used to construct compositional and structural gradients within the scaffolds.The latest applications of gradient scaffolds for the regeneration of bone,osteochondral,and tendon-to-bone interfaces are presented.Furthermore,the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed,as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.
文摘Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the Low-Cost Long-Life Batteries program,China(No.WL-24-08-01)the National Natural Science Foundation of China(No.22279007)。
文摘The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2022HZ027006,No.2024HZ021023)National Natural Science Foundation of China(No.U22A20118).
文摘High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
文摘This supplemental material contains three sections:(Ⅰ)Derivation of the Floquet lattice Hamiltonian;(Ⅱ)Surface states of the Floquet lattice Hamiltonian;(Ⅲ)Evolution of Floquet Weyl points and Fermi arcs with the increase of light amplitude;(Ⅳ)Formalism for light-induced anomalous Hall effects.
文摘The ability to replicate the microenvironment of the human body through the fabrication of scaffolds is a significant achievement in the biomedical field.However,the search for the ideal scaffold is still in its infancy and there are significant challenges to overcome.In the modern era,the scientific community is increasingly turned to natural substances due to their superior biological ability,lower cost,biodegradability,and lower toxicity than synthetic lab-made products.Chitosan is a well-known polysaccharide that has recently garnered a high amount of attention for its biological activities,especially in 3D bone tissue engineering.Chitosan closely matches the native tissues and thus stands out as a popular candidate for bioprinting.This review focuses on the potential of chitosan-based scaffolds for advancements and the drawbacks in bone treatment.Chitosan-based nanocomposites have exhibited strong mechanical strength,water-trapping ability,cellular interaction,and biodegradability.Chitosan derivatives have also encouraged and provided different routes for treatment and enhanced biological activities.3D tailored bioprinting has opened new doors for designing and manufacturing scaffolds with biological,mechanical,and topographical properties.
基金Project (51275179) supported by the National Natural Science Foundation of ChinaProject (2010A090200072) supported by Industry,University and Research Institute Combination of Ministry of Education, Ministry of Science and Technology and Guangdong Province,China+1 种基金Project (2012M511797) supported by China Postdoctoral Science FoundationProject (2012ZB0014) supported by FundamentalResearch Funds for the Central Universities of China
文摘The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
基金supported by the National Natural Science Foundation of China(22378431,52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2023JJ40210,2022JJ20075)+3 种基金the Science and Technology Innovation Program of Hunan Province(2023RC3259)the Key R&D plan of Hunan Province(2024JK2096)Scientifc Research Fund of Hunan Provincial Education Department(23B0699)Central South University Innovation-Driven Research Programme(2023CXQD008).
文摘High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金National Natural Science Foundation of China(No.50973082)
文摘The keratoprosthesis(KPro;artificial cornea)is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision.The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty.The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea.Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells,modification of keratoprosthesis to support cornea cells remains elusive.Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials,but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase.The necrosis of stroma and spontaneous extrusion of the device,allow for maintenance of a precorneal tear layer,and play the role of ensuring a good optical surface and resisting bacterial infection.As a result,improvement in corneal cells has been the main aim of several recent investigations;some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells.The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.
基金Funded by the Key Technologies Research and Development Program(No.2021YFC28000900)the National Natural Science Foundation of China(No.52374178)the Collaborative Innovation Project of Colleges and Universities of Anhui Province(No.GXXT-2020-057)。
文摘A ternary early-strengthening agent consisting of calcium formate+triethanolamine+lithium sulfate was compounded with quercetin to shorten the setting time of cementitious materials while ensuring their early strength.The optimum ratio of the three early-strengthening agents was determined as 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate by response surface methodology.The effects of the ternary early-strengthening agent composed of calcium formate+triethanolamine(TEA)+lithium sulfate on cementitious pore sealing materials under the synergistic effect of quercetin were studied by means of the performance tests of compressive strength,fluidity,and setting time,and the microstructural characterizations of X-ray powder diffractometer(XRD),thermogravimetry(TG-DSC)and scanning electron microscopy(SEM).The study shows that the synergistic effect of ternary early-strengthening agent and quercetin forms a multi-performance composite admixture for cementitious materials.The best performance was obtained with the compounding scheme of 0.5%calcium formate+0.04%triethanolamine+0.4%lithium sulfate ternary early-strengthening agent and 0.05%quercetin.The compressive strength of 1,3,7,and 28 d are 94.8%,39.8%,42%,and 28%higher than those of the blank group,respectively.The initial time and final setting time are 41 and 57 minutes,respectively.According to the microscopic analysis,the network and fibrous C-S-H gels generated by ternary early-strengthening agents are attached to the surface promoted by quercetin,which forms skeleton support while thickening and solidifying the cement slurry,which enhances the early compressive strength of the cement-based materials.
基金Supported by the Major State Basic Research Development Program (No.G1990 5 4 30 5 )
文摘Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.
基金the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)for supporting our work。
文摘In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(Nos.DUT22QN203 and DUT22YG201).
文摘Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.