期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method
1
作者 Wenpeng Li Zhenghe Liu +4 位作者 Yujing Ma Zhuxuan Meng Ji Ma Weisong Liu Vinh Phu Nguyen 《Computer Modeling in Engineering & Sciences》 2025年第2期1515-1543,共29页
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-... This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems. 展开更多
关键词 Structural dynamics DEFORMATION material point method sparse polynomial chaos expansion adaptive randomized greedy algorithm sensitivity analysis
在线阅读 下载PDF
Geo-interface modeling with material point method: A review
2
作者 Tiancheng Xie Honghu Zhu +4 位作者 Youkou Dong Mingliang Zhou Bin Wang Wei Zhang Jidong Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3950-3972,共23页
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma... Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers. 展开更多
关键词 Geo-interface material point method(MPM) Interaction mechanism Large deformation Numerical simulation
在线阅读 下载PDF
Material point method simulation of hydro-mechanical behaviour in twophase porous geomaterials: A state-of-the-art review 被引量:4
3
作者 Xiangcou Zheng Shuying Wang +1 位作者 Feng Yang Junsheng Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2341-2350,共10页
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat... The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers. 展开更多
关键词 Coupled problems Hydro-mechanical behaviour Large deformation material point method(MPM)
在线阅读 下载PDF
Mobility and dynamic erosion process of granular flow:insights from numerical investigation using material point method 被引量:2
4
作者 YU Fangwei SU Lijun +1 位作者 LI Xinpo ZHAO Yu 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2713-2738,共26页
In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility... In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well. 展开更多
关键词 Column collapse Granular flow Granular soil material point method MOBILITY Numerical tests
原文传递
Impact dynamics of granular flow on rigid barriers:insights from numerical investigation using material point method
5
作者 YU Fangwei SU Lijun +1 位作者 LI Xinpo ZHAO Yu 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4083-4111,共29页
In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Me... In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well. 展开更多
关键词 Column collapse Granular flow Impact force material point method Numerical tests Rigid barrier
原文传递
A hybrid contact approach for modeling soil-structure interaction using the material point method
6
作者 Qinyang Sang Yonglin Xiong +3 位作者 Rongyue Zheng Xiaohua Bao Guanlin Ye Feng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1864-1882,共19页
The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early c... The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems. 展开更多
关键词 material point method Soil-structure interaction Numerical simulation Contact algorithm
在线阅读 下载PDF
Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method 被引量:2
7
作者 Wei-hai YUAN Hao-cheng WANG +3 位作者 Kang LIU Wei ZHANG Ding WANG Yuan WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第11期909-923,共15页
This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit m... This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations. 展开更多
关键词 material point method(MPM) Large deformation Implicit generalized interpolation material point method(iGIMP) Volumetric locking B-bar method
原文传递
Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture 被引量:5
8
作者 Duanying Wan Meng Wang +6 位作者 Zheming Zhu Fei Wang Lei Zhou Ruifeng Liu Weiting Gao Yun Shu Hu Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1097-1114,共18页
Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challengin... Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challenging task.Some inherent weaknesses can be overcome by coupling the generalized interpolation material point(GIMP)and the convected particle domain interpolation technique(CPDI).For the media in the borehole,unchanged GIMP-type particles are used to guarantee a homogenous blast pressure.CPDITetrahedron type particles are employed to avoid the fake numerical fracture near the borehole for the rock material.A blasting experiment using three-dimensional single-borehole rock was simulated to examine the applicability of the coupled model under realistic loading and boundary conditions.A good agreement was achieved between the simulation and experimental results.Moreover,the mechanism of three-dimensional rock fracture was analyzed.It was concluded that rock particle size and material parameters play an important role in rock damage.The reflected tensile waves cause severe damage in the lower part of the model.Rayleigh waves occur on the top face of the rock model to induce a hoop failure band. 展开更多
关键词 material point method(MPM) Convected particle domain interpolation (CPDI) Generalized interpolation material point (GIMP) Rock fracture BLAST
在线阅读 下载PDF
Large deformation analysis of slope failure using material point method with cross-correlated random fields 被引量:4
9
作者 Chuan-xiang QU Gang WANG +1 位作者 Ke-wei FENG Zhen-dong XIA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第11期856-869,共14页
Large deformation analysis of slope failure is important for hazard and risk assessment of infrastructure.Recent studies have revealed that spatial variability of soil properties can significantly affect the probabili... Large deformation analysis of slope failure is important for hazard and risk assessment of infrastructure.Recent studies have revealed that spatial variability of soil properties can significantly affect the probability of slope failure.However,due to limitations of traditional numerical tools,the influence of spatial variability of soil properties on the post-failure behavior of slopes has not been fully understood.Therefore,in this study,we aimed to investigate the effects of the cross-correlation between cohesion and the friction angle on the probability of slope failure and post-failure behavior(e.g.run-out distance,influence distance,and influence zone)using a random material point method(RMPM).The study showed that mesh size,strength reduction shape factor parameter,and residual strength all play critical roles in the calculated post-failure behavior of a slope.Based on stochastic Monte Carlo simulation,the effects of cross-correlation between cohesion and the friction angle on the probability of slope failure,and its run-out distance,influence distance,influence zone,and sliding volume were studied.The study also showed that material point method(MPM)has great advantages compared with the finite element method(FEM)in handling large deformations. 展开更多
关键词 material point method(MPM) Spatial variability Random field Large deformation Risk assessment
原文传递
Modeling pipe-soil interaction under vertical downward relative offset using B-spline material point method 被引量:2
10
作者 Chunxin Zhang Honghu Zhu Haojie Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1520-1534,共15页
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip... To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent. 展开更多
关键词 Pipe-soil interaction material point method(MPM) Large ground deformation Failure mechanism Downward movement
在线阅读 下载PDF
A Flux Based Approximation to Simulate Coupled Hydromechanical Problems for Mines with Heterogeneous Rock Types Using the Material Point Method 被引量:1
11
作者 Gysbert Basson Andrew P.Bassom Brian Salmon 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期379-409,共31页
Advances in numerical simulation techniques play an important role in helpingmining engineers understand those parts of the rock mass that cannot be readily observed.The Material Point Method(MPM)is an example of such... Advances in numerical simulation techniques play an important role in helpingmining engineers understand those parts of the rock mass that cannot be readily observed.The Material Point Method(MPM)is an example of such a tool that is gaining popularity for studying geotechnical problems.In recent years,the original formulation of MPM has been extended to not only account for simulating the mechanical behaviour of rock under different loading conditions,but also to describe the coupled interaction of pore water and solid phases in materials.These methods assume that the permeability of mediums is homogeneous,and we show that these MPM techniques fail to accurately capture the correct behaviour of the fluid phase if the permeability of the material is heterogeneous.In this work,we propose a novel implementation of the coupled MPM to address this problem.We employ an approach commonly used in coupled Finite Volume Methods,known as the Two Point Flux Approximation(TPFA).Our new method is benchmarked against two well-known analytical expressions(a one-dimensional geostatic consolidation and the so-called Mandel-Cryer effect).Its performance is compared to existing coupled MPM approaches for homogeneous materials.In order to gauge the possible effectiveness of our technique in the field,we apply ourmethod to a case study relating to a mine known to experience severe problems with pore water. 展开更多
关键词 Fluid PERMEABILITY material point method MINING FAULTS
在线阅读 下载PDF
Modeling footing resting on anisotropic sand using material point method 被引量:1
12
作者 Liu Gao Dong Liao Pin-Qiang Mo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3271-3290,共20页
Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating ge... Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating geotechnical problems with large deformation. In this study, an advanced anisotropic critical state theory (ACST)-based soil model is implemented in MPM to study the response of strip footing resting on anisotropic sand. The capability of the model is verified by simulating several element tests and strip footing tests with different soil densities and fabric bedding plane orientations. For the footing problem with a vertical load, as the fabric bedding plane orientation increases, the bearing capacity decreases and its corresponding settlement increases. The failure pattern becomes asymmetrical when the bedding plane orientation or the loading direction is inclined. A comparison between the simulation results predicted by the anisotropic and isotropic models is made, which demonstrates that neglecting the fabric anisotropy may lead to the overestimation of the bearing capacity. 展开更多
关键词 material point method(MPM) FOOTING Constitutive model ANISOTROPY Inclined loading
在线阅读 下载PDF
Implementation of absorbing boundary conditions in dynamic simulation of the material point method 被引量:1
13
作者 Zhi-gang SHAN Zhe-xian LIAO +2 位作者 You-kou DONG Dong WANG Lan CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第11期870-881,共12页
Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional truncated boundaries.Absorbing boundary conditions(ABCs),to attenuate the energy of the outward waves,a... Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional truncated boundaries.Absorbing boundary conditions(ABCs),to attenuate the energy of the outward waves,are necessary to ensure the proper representation of the kinematic field and the accurate quantification of impact forces.In this paper,damping layer and dashpot ABCs are implemented in the material point method(MPM)with slight adjustments.Benchmark scenarios of different dynamic problems are modelled with the ABCs configured.Feasibility of the ABCs is assessed through the velocity fluctuations at specific observation points and the impact force fluctuations on the structures.The impact forces predicted by the MPM with ABCs are verified by comparison with those estimated using a computational fluid dynamics approach. 展开更多
关键词 material point method(MPM) Absorbing boundary condition(ABC) Submarine landslide IMPACT
原文传递
Coseismic site response and slope instability using periodic boundary conditions in the material point method 被引量:1
14
作者 Abdelrahman Alsardi Alba Yerro 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期641-658,共18页
This paper proposed the explicit generalized-a time scheme and periodic boundary conditions in the material point method(MPM)for the simulation of coseismic site response.The proposed boundary condition uses an intuit... This paper proposed the explicit generalized-a time scheme and periodic boundary conditions in the material point method(MPM)for the simulation of coseismic site response.The proposed boundary condition uses an intuitive particle-relocation algorithm ensuring material points always remain within the computational mesh.The explicit generalized-a time scheme was implemented in MPM to enable the damping of spurious high frequency oscillations.Firstly,the MPM was verified against finite element method(FEM).Secondly,ability of the MPM in capturing the analytical transfer function was investigated.Thirdly,a symmetric embankment was adopted to investigate the effects of ground motion arias intensity(I_(a)),geometry dimensions,and constitutive models.The results show that the larger the model size,the higher the crest runout and settlement for the same ground motion.When using a Mohr-Coulomb model,the crest runout increases with increasing I_(a).However,if the strain-softening law is activated,the results are less influenced by the ground motion.Finally,the MPM results were compared with the Newmark sliding block solution.The simplified analysis herein highlights the capabilities of MPM to capture the full deformation process for earthquake engineering applications,the importance of geometry characterization,and the selection of appropriate constitutive models when simulating coseismic site response and subsequent large deformations. 展开更多
关键词 Coseismic site response Periodic conditions Time integration material point method(MPM)
在线阅读 下载PDF
Coupled Shell-Material Point Method for Bird Strike Simulation 被引量:1
15
作者 Bo Wu Zhenpeng Chen +2 位作者 Xiong Zhang Yan Liu Yanping Lian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第1期1-18,共18页
In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper de... In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples. 展开更多
关键词 Bird strike simulation material point method Shell element COUPLING Adaptiveconversion
原文传递
A multiscale material point method for impact simulation 被引量:1
16
作者 Zhen Chen Yilong Han +2 位作者 Shan Jiang Yong Gan Thomas D. Sewell 《Theoretical & Applied Mechanics Letters》 CAS 2012年第5期10-13,共4页
To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being devel... To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being developed, within the framework of the MPM, to describe the detonation process of energetic nano-composites from molecular to continuum level so that a multiscale equation of state could be formulated. In this letter, a multiscale MPM is proposed via both hierarchical and concurrent schemes to simulate the impact response between two microrods with different nanostructures. Preliminary results are presented to illustrate that a transition region is not required between different spatial scales with the proposed approach. 展开更多
关键词 material point method multiscale simulation impact response
在线阅读 下载PDF
Coupling between finite element method and material point method for problems with extreme deformation 被引量:2
17
作者 yanping Lian Xiong Zhang Yan Liu 《Theoretical & Applied Mechanics Letters》 2012年第2期15-18,共4页
As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM... As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM) for small deformation problems. Therefore, an algorithm for the coupling of FEM and MPM is proposed to take advantages of both methods. Furthermore, a conversion scheme of elements to particles is developed. Hence, the material domain is firstly discretized by finite elements, and then the distorted elements are automatically converted into MPM particles to avoid element entanglement. The interaction between finite elements and MPM particles is implemented based on the background grid in MPM framework. Numerical results are in good agreement with that of both FEM and MPM 展开更多
关键词 material point method coupling method conversion scheme PENETRATION LANDSLIDE
在线阅读 下载PDF
An Efficient Particle Subdomain Quadrature Scheme for the Material Point Method
18
作者 Zheng Sun Xiaornin Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第2期274-285,共12页
The material point method(MPM)has been proved to be an effective numerical method for large deformation problems.However,the MPM suffers from the cell crossing error as that the material particles are used to represen... The material point method(MPM)has been proved to be an effective numerical method for large deformation problems.However,the MPM suffers from the cell crossing error as that the material particles are used to represent the deformed material and to perform the particle quadrature.In this paper,an efficient subdomain quadrature material point method(sqMPM)is proposed to eliminate the cell crossing error efficiently.The particle domain is approximated to be the line segment,rectangle,and cuboid for the one-,two-,and three-dimensional problems,respectively,which are divided into several different subdomains based on the topological relationship between the particle domain and background grid.A single Gauss quadrature point is placed at the center of each subdomain and used for the information mapping.The material quantities of each Gauss quadrature point are determined by the corresponding material particle and the subdomain volume without the cumbersome reconstruction algorithm.Numerical examples for one-,two-,and three-dimensional large deformation problems demonstrate the effectiveness and highly enhanced convergence and efficiency of the proposed sqMPM. 展开更多
关键词 material point method Cell crossing error Subdomain quadrature Large deformation
原文传递
A material point finite element method for thermo-hydro-mechanical modeling in poro-elastic media with brittle fracturing
19
作者 Zhaonan Wang Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3299-3315,共17页
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche... In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated. 展开更多
关键词 Thermo-hydro-mechanical(THM)coupling Local thermal non-equilibrium(LTNE) material point method(MPM) Characteristic-based method Phase field model
在线阅读 下载PDF
Dynamic collapse characteristics of the tunnel face induced by the shutdown of earth pressure balance shields(EPB):A 3D material point method study 被引量:2
20
作者 Shuying Wang Tingyu Liu +2 位作者 Xiangcou Zheng Junsheng Yang Feng Yang 《Underground Space》 SCIE EI CSCD 2024年第3期164-182,共19页
The collapse of the tunnel face is a prevalent geological disaster in tunnelling.This study employs a three-dimensional(3D)material point method(MPM)to simulate the dynamic collapse process and post-failure mechanisms... The collapse of the tunnel face is a prevalent geological disaster in tunnelling.This study employs a three-dimensional(3D)material point method(MPM)to simulate the dynamic collapse process and post-failure mechanisms of the tunnel face.The specific focus is on the scenario where the auxiliary air pressure balanced shield with a partially filled chamber is shut down.To assess the suitability of the 3D MPM,numerical solutions are compared with the results from small-scale experimental tests.Subsequently,a series of large-scale numerical simulations is conducted to explore the dynamic collapse characteristics of the tunnel face induced by the shutdown of the EPB shield under various support air pressures and cutter head conditions.The temporal evolution of the accumulated soil masses in the soil chamber and ground responses under different support air pressures,cutter head types and opening ratios are discussed.In particular,the associated surface subsidence due to the tunnel face collapse is determined and compared with empirical solutions.Numerical results confirm the applicability of the 3D MPM for simulating the large-scale tunnel face collapse scenarios,spanning from small to large deformation analysis. 展开更多
关键词 Large deformation material point method Partially filled chamber Post-failure mechanism Shield tunnel Tunnel face collapse
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部